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Suboptimal Decentralized Control of Multivariable Systems

ISMAIL A. EL-SHAHAT
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ABSTRACT. A state-space design for multivariable, suboptimal decentralized
control is presented. It is based upon the scalar multiplier with a cost function
βJ

*
. A large-scale system consisting of a number of subsystems is used. The

suboptimal control law for the large system is obtained from the suboptimal
laws of the subsystems. Since the control laws of the subsystems are obtained
by solving the low-order matrix Ricatti equations, a considerable saving in
computer storage and time is attained. Sufficient conditions for the optimal
cost function are also given. The behaviour of the algorithm is illustrated by a
simulated example.
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1. Introduction

When the order of the system is very high, the solution of the matrix Riccati equation is
required when designing the suboptimal controls for systems with quadratic performance
criteria. The number of nonlinear differential equations to be integrated becomes very
large, if the order of the system is high. It follows that feedback controller of state infor-
mation can be proven to be the major cost of the virtual situations such as: power-system
control, process control and complex industrial system controls. To overcome this diffi-
culty, many methods mentioned in Meditch[1], Aoki[2], Chidambara and Schanker[3]

 as
well as Isaken and Payne[4] have been proposed to obtain suboptimal controls for higher-
order systems. Hassan and Singh[5] developed a procedure for computing under optimal
or suboptimal decentralized controller. In Reddy and Rao[6], the suboptimal control law
for the large-scale system is derived from the optimal control laws of the subsystems.
Since the optimal control laws of the subsystems are obtained by solving the lower-order
matrix Riccati equation; Skelton and Xu[7], Yaz[8], Ismail[9], Ismail[10], Ismail[11] and
Toivonen and Makila[12] have developed an entirely new approach to the solution of the
decentralized suboptimal control problem. In this research paper, a new design proce-
dure, which is motivated by its simplicity and the fact that the algorithm is based on sub-
optimality multiplier β*J is developed. It uses the well-known standard Ricatti equation
when reliable conditions are satisfied to form a decentralized output feedback control
gains. Numerical results show that the algorithm has numerous advantages.
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2. Control Problem

Research in decentralized control has been motivated by using conventional modern
control theory as state space equations. In this research paper, a large-scale system con-
sisting of N subsystem that can be defined for a decentralized system is used. The sub-
optimal problem of a large-scale system consisting of N subsystem, with βJ for the cost
function, can be written as

(1)

Where α is a real scalar, QK ≥ 0 and RK > 0. J in equation (1) is minimized according
to the linear, time-invariant, continuous system, consisting of N subsystems as follows:

X
⋅ 

K = AK XK + BK UK , XK (0) = X0

yK  = CK XK , K = 1, ... , N (2)

where K is a subsystem,
XK is a state vector of dimension nK ,

UK is a control vector of dimension pK ,

yK is an output vector of dimension rK, and

AK, BK and  Ck are matrices of ranks nk, pk and rk respectively.

It is required to determine a suboptimal decentralized control law of the form:

U
*
K = – FK yK , K = 1, ... , N (3)

where FK is  of feedback gain matrix of dimension rK

This function will minimize the cost function of the equation (1).

3. Solution of the Problem

A suboptimal decentralized control U
*

K and its cost J
*
 for the kth subsystem are given

by:

U
*

K = – FK CK XK = – R–1
k  BT

K P̃K XK (4)

J
*

= XT
K (0) P̃K XK (0) (5)

For evaluating the suboptimal output feedback system, PK and A
n
K are defined as:

P̃K = β PK  (6)

and An
K  ≡

∆
  AK + BK Rk

–1 BT
K  P̃K  – BK FK CK (7)

J e X Q X U R U dt
K

N

K
T

K K K
T

K K= + ≥
∞

=
∫∑

01

2 0α α( )     
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where Pk = PT
K is the unique positive solution of the algebraic Riccati equation:

PK (AK + αI) + (AK + αI)T PK + QK – PK BK RK
–1 BT

K PK = 0 (8)

for a given β ≥ 1, if there exists an Fk which satisfies

P̃K (An
K + αI) + (An

K + αI)T  P̃K + QK – P̃K BK RK
–1 BK

T  P̃K = 0 (9)

and CT
K FT

K  RK  FK CK  ≤  P̃K  Bk  R–1 
K  BT

K   P̃K (10)

In this case, there exists a suboptimal decentralized output feedback control of equation
(4), with which the subsystem (2) yields the minimized cost function of equation (1).

4. Summary of the Algorithm

The proposed algorithm was tested on one system, and the minimum a priori knowl-
edge required by the suboptimal decentralized control is identified. The constraints and
the procedures of the algorithms are as follows:

1 – α  ≥  0       and β ≥ 1 are real scalars,

2 – FK ∈  θ K is chosen,

where θK = FK ∈  Rp.r : AK + BK FK CK  is asymptotically stable, and j = 1,
where j = number of iterations,

3 – FK
J ∈ θ K is found, so that:

P̃,
J
K (A

n
k + αI) + (An

K + αI)T + P̃,
J
K + QK – P̃,

J
K BK RK

–1 BT
K P̃,

T
K = 0 ,

and CT
K  FT

K RK FK CK ≤   P̃,
J
K BK RK

–1 BT
K  P̃,

J
K    .

Consequently, equations (9) and (10) are satisfied. They represent the sufficient con-
ditions for the suboptimal decentralized control.

4 – j : = J + 1 is updated

5 – Then, go to No. 2.

5. A Numerical Example

A control system consisting of three subsystems is considered. It is defined by the
following matrices (Yu and Siggers[13], Yu and Moussa[14]:
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 ,   C I3 =

where Q = I, R = I, P = I, and I is a unity matrix.

The suboptimal decentralized feedback of this example is carried out through the use
of computer program devised for the present algorithm which depends on the minimiza-

tion of the cost function βJ
*
. The results of the computations are tabulated hereafter for

the three subsystems stated in Table (1). It is observed from  Table (1), with the subopti-
mal controls laws of the subsystems used in the example, that the algorithm can  be ap-
plied to a large-scale linear systems. Besides, the step response of the suboptimal
closed-loop was determined as shown in  Fig. (1). From the four curves, it is clear that
the states of the variables (VAR1, VAR2, VAR3, VAR4) for subsystem1, subsystem2
and subsystem3 reached the steady state in a short time.
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α 1.000 1.000 1.000

β 1.500 1.500 1.500

J
*

34.519 32.632 17.022

TABLE 1. Results of the algorithm applied to the example.
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Conclusions

An output feedback controller of suboptimality degree β is applied to a large-scale

linear system to solve the suboptimal decentralized control problem. The algorithm is

based on a standard Riccati equation, and is applicable  when certain conditions are sat-

isfied to form a suboptimal decentralized output feedback control gain. The developed

suboptimal decentralized controller is easy to implement, simple to iterate (low number

of iterations), requires insignificant computation time and does not require large memo-

ry. This has been illustrated by an example. 
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