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ABSTRACT The free and forced vibrations of a uniform cantilever beam
with a translational elastic constraint at the beam tip and carrying a concen
trated mass at an arbitrary intermediate point are analyzed. In the analysis,
the base beam equation of motion is solved to obtain mode shape functions
which satisfy all the geometric and natural boundary conditions at the beam
ends. These functions are used in conjunction with Galerkin's method to
obtain the free and the forced response. The key parameters are stiffness
ratio, mass ratio and the position of the intermediate load. Partial computa
tional results are compared with existing data: the agreement is good. For
convenient use, the results are presented in dimensionless forms.

1. Introduction

The bending linear vibration of an elastically restrained beam element carrying con
centrated masses located within the beam span is a subject of practical engineering
interest and has been the objective of many recent theoretical investigations. Closed
form solutions for this type of systems are generally difficult to obtain, and a number
of researchers have considered various approximate methods for a variety of situa
tions. Liu et al. lLl used Laplace transformation method to calculate the eigenvalues
and eigenfunctions for a beam hinged at both ends by rotational springs and carrying
arbitrary located concentrated;'masses. Liu and Haung[2] used the Laplace transfor
mation method to study the free vibration of a beam hinged by a rotational spring at
one end and carrying a concen...trated mass at the tip, and another at an intermediate .
point. Ercoli and Laura[3] used Jacquot's methodl4], Ritz method, and Rayleigh
Schmidt approachl5] to study the effect of an elastically mounted concentrated-mass
on the fundamental mode of a beam for various end conditions. Liu and Yeh[6] used
Rayleigh-Ritz method in conjunction with beam functions satisfying all. end condi
tions to study the free vibration of a restrained non-uniform beam with intermediate
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masses. Goel[7] studied the free vibration of a cantilever beam carrying a concen
trated mass at an arbitrary intermediate location, and Kounadis[8] studied the free
and forced vibrations of a restrained cantilever beam with attached masses. We note
here tha~ in all the aforementioned investigations each concentrated element (a
lumped mass or a spring) located within the beam span was treated as a concentrated
load on the beam. The mode shape functions obtained in these studies correspond to
the 'base beam' (beam with prescribed boundary conditions but without inter
mediate concentrated elements). These approximate mode shape functions, how
ever, are expected to deviate significantly from the true eigenfunctions as the stiff
ness or the inertia of an intermediate attached element becomes large compared with
that of the base beam. Furthermore, the use of these mode shape functions as normal
coordinates in the study of the forced vibration of these beam systems does not neces
sarily lead to uncoupled equations of motion and to closed form solutions.

The exact mode shape functions for this type of problems which account for all of
the systems characteristics (i.e., eigenfunctions which satisfy all ends boundary con
ditions and account for the effects of the intermediate concentrated elements) may
be_ derived by dividing the beam into two segments at the point of attachment for
each of the concentrated elements. One then formulates the equation of motion for
each segment and requires the solution to each of these equations to satisfy all of the
boundary and continuity conditions at the ends of the corresponding segment. This
approach has been used by Giirg6ze and Batanl9J and by Lau[IOJ to study the free vib
ration of a uniform cantilever beam with a rotational and translational constraint at
some point. Kojima et a/. ltl ]also used this approach to study the forced response of a
cantilever beam carrying a tip mass and a magnetic vibration absorber at an inter
mediate location. Ebrahimi[l2] used this approach to study the free and forced lon
gitudinal vibrations of fixed-fixed bars with lumped masses. Although this approach
yields the exact solutions and exact eigenfunctions for these types of problems, if suf
fers from the disadvantages of being algebraically cumbersome, i.e., the application
of this method to the solution of a beam problem with n intermediate concentrated
elements involves the solution of n simultaneous boundary value problems and the
solution of generally more complicated characteristic equation.

In the present work we study the free and forced vibrations of a cantilever beam
constrained atthe free end by a translational spring and carrying a concentrated mass
at an arbitrary intermediate location, as shown in Fig. 1. The analysis involves solv-
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"FIG. 1. Cantilever beam with an intermediate concentrated load and end translational spring.
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ling the equation of motion for the elastically restrained base beam (no concentrated
mass) to obtained the transcendental equation for the natural frequencies of the base
beam and to obtain the mode shape functions which satisfy all of the base beam
geometric and natural end conditions. These mode shape funcitons are then used in
conjunction with Galerkin's method, treating the concentrated mass as an applied
load, to study the free and forced vibration of the total beam system. Parametric
studies are made for the effects of end spring stiffness, location and magnitude of the
concentrated mass on the natural frequencies and resonance response of the system.
The results of this approach are compared with the existing results of other methods.
For convenience, all results are presented in dimensionless forms. All numerical
computations were programmed using double precision on the VAX/VMS v.ersion
4.4 digital computer. Note that, although researchers have focused on a number of
beam systems simialr to the one under consideration, no one, to the best of the au
thor's knowledge, has adequately treated the present problem.

2. Analysis of the Problem

2.1 Equations of Motion

Adopting Bernoulli-Euler classical theory of bending of beams, the governing
equation of motion for the uniform beam shown in Fig. 1 may be written as

E1 1..1 + (m + M8(x-a))!!..1 = 8(x-a)f(t)
ax4 af2

with the boundary conditions

(1)

y(O) ~ 0
ax

!!J1!1 0ax2

EI tJ1!1 ky(l)
ax3

(2)

where E is the Young's modulus of elasticity, 1 is the second moment of the cross
sectional area, m is the mass per unit length of the beam, Dis the Dirac delta function,
and [(t) is an externally applied dynamic load. A series solution of equation (1) is as
sumed in the form

n

y (x, t) = I cPi (x) qi (t)
i = 1

(3)

where cP;(x) are the mode shape funcitons (to be determined later) assumed here to
satisfy all geometric and natural boundary c9nditions of the base beam, and q;(t) are
generalized coordinates. Substituting equation (3) into equation (1) leads to

n n n

E1 I cf>;'" qj + m I cf>;iij = 8(x-a) (f(t) - M L cf>jiij) (4)
i = 1 i = I i = 1
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-
where a superscript prime and dot represent derivatives with respect to x and to time,
respectively. Next multiplying equation (4) by cPj , intergrating between the limits 0
and l (total length of beam) and using the boundary conditions given in equation (2),
one obtains the Galerkin's equation[13] in martix form

[m] {{jet)} + [K] {q(t)} = {Q} f(t) (5)

where [m] and [K] are n x n constant mass and stiffness matrices, respectively, and Q
is n x 1 generalized force matrix. The coefficients of these matrices are given by .,

mu m f~ cP7 dx + M cP7 (a) (a)

m·· M cPj(a) cPj(a) , i=l=j (b)
IJ

Kii £1 f~ cP;,2 dx + kcP7(1) (c) (6)
I.; ...,

K.. 0, i=l=j (d)
IJ

Qi cPi (a) (e)

Note that, the forms of [K] and [m] matrices" in equation (5) depend on the mode
shape functions cP;Cx) used to arrive at this equation. Since the cPi(x) to be used in the
present work are assumed to satisfy all natural and geometric boundary conditions at
the beam ends, and since the beam has no elastic constraint at any intermediate loca
tion within its span then Kij = 0 for i ¥- j, i.e., the cP;Cx) are orthogonal with respect to
[K] matrix. On the other hand, since these cPj(x) do not include the effect of the con
centrateq mass M, the mass matrix [m] in equation (5) is nondiagonal, i.e., cP;Cx) are
not o,rthogonal with respect to [m] matrix since for i ~ j, f~ cPi cPj dx = 0 and
McPla) cPj(a) =1= O. The terms McP;(a) cPj(a) in the [m] matrix are dynamic coupling
terms and represent the effect of the concentrated mass M on the natural frequencies
of the beam. If instead of the above mode shape funcitons cPlx) one calculates the [m]
and [K] matrices in equation (5) using trial funcitons which satisfy some but not all of
the beam end conditions, as for example when one uses Rayleigh-Ritz method, then
both matrices [m] and [K] will in general be nondiagonal l13]. Before we proceed
further and in order to check the accuracy of the formulation in equation (5), we cal
culate the eigenfunctions cPi(x) for the base beam and solve the eigenvalue problem
associated with equation (5) to determine the effects of the magnitude and location
of the concentrated mass M, and the magnitude of the end spring stiffness on the
natural frequencies of the beam-mass system.

2.2 Evaluation ofEigenfunctions 4>i and Natural Frequencies

First, the eigenfunctions cPi(x) for the base beam are determined using the equa
tion of motion

o (7)
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and the boundary conditions given in equation (2). Note that, the end spring k was
not included in equation (7) but was accounted for as a natural boundary condition in
equation (2). This was done in order to obtain the exact cP;Cx) which accouJ)t for all
the characteristics of the base beam. Using the standard method of separation ofvar
iables, one assumes

y(x, t) = Y(x) cos wt (8)

where w is the eigenfrequency of the base beam. Substituting equation (8) into equ
ation (7) leads to the following differential equation

Y"'(x) - q4 Y(x) = 0 (9)

where q4 = mw2 / £1. The solution to equation\ (9) is given by

Y(x) = C1 sin qx + C2 cos qx +1C3 sinh qx + C4 cosh qx (10)

Substituting the boundary conditions of equation (2) into, equation (10), solving for
the constants C2, C3and C4 in terms of C1and setting cPlx) = Y(x) / C1, one obtains
the eigenfunctions

J ~

cPi = sin qx - sinh qx - r(cos qx - cosh qx)

and the transcendental equation for the natural frequencies

1 + cos ql cosh ql +~ (cosh ql sin ql - sinh ql cos ql)
(ql) -

where S isa dimensionless stiffness parameter defined as

S. - kP
EI

o

(11)

(12)

(13)

which is a measure of the end spring stiffness relative to.the 'base beam stiffness, and
where

r = sin qI + sinh qI
cos ql + cosh ql

(14)

is the weighting constant associated with each mode. Note that for S = 0, i.e., when
k = 0, equation (12) reduces to that one obtained for a cantilever beam with free tip
(see, Meirovitch[13] p. 227). Equation (12) has an infinite number of roots ql. To each
root ql corresponds a frequency wi and a mode shape cPi(X). The first five frequency
parameters ql obtained by solving equation (12) numerically using the bisection
method are compared in Table 1 with those obtained by Lau[10] for the cases S =

0,1,10,100,1000 and 10000. The agreement between the two results is exact, which is
not surprising since the present method as well as the method of Lau[101 for the pre
sent case are exact.

3. Evaluation of [M], [K] and {Q} Matrices

The elements of the system matrices [m], [K] and {Q} in equation (5) can now be
evaluated since qJand cPlx) for a given S needed for the evaluation of these matrices
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TABLE 1. Frequency parameters qJ for the beam in Fig. 1 with k ~ 0 and M = O.

s
0 1 10 100 1000 10000

Present study 1.87510 2.01000 2.63893 3.64054 3.89780 3.92374
4.69409 4.70379 4.79377 5.61600 6.87629 7.05070
7.85476 7.85682 7.87565 8.08409 9.55253 10.15498

10.99554 10.99629 11.00310 11.07484 11.95100 13.22183
14.13717 14.13752 14.14072 14.17355 14.58153 16.22802

Reference [3J 1.87510 2.01000 2.63892 3.64054 3.89789 3.92374
4.69409 4.70379 4.79377 5.61600 6.87629 7.05070
7.86476 7.85682 7.87565 8.08409 9.55253 10.15498

10.99554 10.99629 11.00310 11.07484 11.95100 13.22183
14.13717 14.13752 14.14072 14.17355 14.58153 16.22802

are now known from the analysis of the previous section. Substituting equation (11)
into' equations (6-a) and (6-b), carrying out the integration and simplifying the re
sults, one obtains

mjj = mb !r; + 2~J [(r; -1) sin ql cos ql + (r/ + 1) sinh ql cosh ql

- 2("; - 1) cos qJ sinh qi l - 2(~ + 1) sin qi l cosh qi1

- 2r; (sin qJ - sinh qi l )2]

+ J.L[sin qJ - sinh qJz - ri (cos qJz - cosh qi lz)]2 } (15)

and

mij = mb J.L { [sin qJz - sinh qJz - ri (cos qi lz - cosh qJz)]

x [sin qjlz - sinh qjlz-'j (cos qjlz - cosh qjlz)]} (16)

where mb is the total mass of base beam, J.L is a dimensionless mass parameter defined
as J.L = Mlmb, and z = all, is a dimensionless parameter which defines the position a
of the concentrated mass M relative to base beam total length I.

Similarly, substituting for equation (11) and its derivative into equation (6-c), in
tegratIng and simplifying the results, leads to

£1 {2 4 ( q;1)3 2. 2.
K ii = [3 'i (q/) + -2- [(ri -1) sIn q;l cos q;l + (ri + 1) sInh q;l cosh q;i

+ 2(~ -1) cos,q;! sinh q;l + 2(1 + r;) sin q;l cosh q;l- 2ri (sin q;l + sinh q;i)2]

+ S [sin q;i - sinh q;i- rlcos q;!- cosh q;i)]2 } (17)

with Kii = 0 for i ¥= j. Finally, substituting equation (11) into equation (6-e), the
generalized force coefficients'Q i becomes

Qi = sin q;iz - sinh q;iz - ri (cos q;iz - cosh q;iz) (18)

Equaitons. (15)-(18) are used in the next sections to evaluate the free and forced vib
ration of the beam-mass system for various values of the parameters S, J.L, and z.
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4. Effect of the Attached Mass M on Frequency Parameters qil

The combined effects of the system parameters S, 1-1-, and z on the frequency
parameters q;l for the beam-mass system can now be investigated from equation (5),
since the system metrices [m] and [K] are now known from the analysis of the previ
ous section. The frequency parameters qJ are obtained by solving the eigenvalue
problem associated with equation (5), that is, one lets

[m] {q(t)} + [K] {q(t)} = 0

A solution to the above linear equations may be obtained by assuming

{q(t)} = {q} expiut

(19)

(20)

where w is now the eigenfrequency of the beam-mass system. Substituting equation
(20) into (19) leads to the eigenvalue problem.

[[Kl-w2 [m]j {q} = 0 (21)

The characteristic equation for the eigenfrequencies is obtained by setting the de
terminant of the coeffcients matrix in the above equation to zero,

det [ [K] - w2 [m] 1= 0 (22)

For the sake of simplicity and the purpose of illustrating the procedure we evaluate
only the first three qJ; thus we carry out the expansion of the equation (22) for the
case where [m] and [K] are of dimensions 3 x3. For this case, the expansion of equa
tion (22) leads, after simplifying, to the cubic characteristic equation

a3X
3' + a2X

2 + alX + ao = 0 (23)

where X is a dimensionless parameter defined as
w2 m /3

X = - El = (qJ)4 (24)

and a3 ' a2 ' at and aoare dimensionless parameters expressed as follows

(mIl m22 m33 - mIl m~3 + 2m l2 m l3 m23 - mi2 m33 - mi3 m 22)
a = (25)

3 tnt

and

(m~3Kll + mi2K33 + mi3K 22 - mIl m 22K33

-mIl m33K22-m22m33KII) (~)
Elmb

(26)

(27)

(28)
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Numerical solutions of equation (23) were found using the bisection method. It is
interesting to note that it was found necessary to carry out all computations in
equation (23) using double precision whereas when single precision computations
were used the numerical solutions of equation (23) were found sometimes not to
converge indicating the problem is very sensitive to small errors. Table 2 shows a
comparison between the first three frequency parameters qjl obtained using
equation (23) and those obtained in references[2,7,8], for the cases J.L = 0.5, 1, and 2;

TABLE 2. Frequency parameters qJ for the beam in Fig. 1 with k = 0 and M i= O.

z = 0.3

IL Present study Reference [2] Reference [7] Reference [8]

1.857738 1.857729 No data 1.857687
0.5 4.180531 4.174914 4.174925

6.922564 6.877625 6.877645

z = 0.5

! 1.778508 1.778434 1.792 Nodata
0.5 4.041218 4.032716 4.106

7.854123 7.853989 7.838

1.700566 1.700364 1.711
1.0 3.784538 3.771661 3.601

7.853956 7.853729 7.853

1.581920 1.581490 1.597
2.0 3.555561 3.539601 3.503

7.853835 7.853520 7.837

z = 1.0

1.616519 1.616400 NCl data No data
0.2 4.273204 4.267060

7.380543 7.318370

1.375923 1.375670
0.6 4.096979 4.086650

7.247670 7.172520

1.248212 1.247920
1.0 4.024738 4.031140

7.215395 7.134113

1.076506 1.076200
2.0 3.995255 3.982570

7.188919 7.102650

z = 0,.3, and 0.5, and S = 0, and for the cases J.L = 0.2,0.6, and 2; z = 1, and S = O. For
the cases z = 0.3 and 0.5 the agreement is good while for the case z = 1 the agreement
is fa~~. Note that, for z = 1 the concentrated mass M is located at the beam tip and an
exact' solution using the present method may be found for this case by simply

replacing the third boundary condition !J1fl = 0 in equation (2) by the boundaryax
condition EIE.~ = M!-4D- + ky(l). It is also be noted that the present resultsax at
can be easily extended to the case where the beam may carry more than one inter
mediate concentrated element.
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5. Forced Response

The forced response of the beam-mass system shown in Fig. 1can be handled using
the present procedure in a straightforward manner. Without loss of generality, we
consider the case where [(t) is a simple harmonic forcing functiol1 arising from a rotat
ing mass unbalance, as this case is often encountered in many practical situations.
Thus, we write [(t) as

[(I) = moefJ,2 cos Dt (29)

where mois the mass of the rotating unbalance, e is the eccentricity of mofrom the ro
tation axix, and D is the angular speed of rotation. Substituting equation (29) into
equation (5) one obtains

[m] {q} + [K] {q(t)} = moeD2 {Q} cos DI (30)

where [m], [K] and {Q} are known constant matrices given by equations (15) through
(18). The solutions ofthe nonhomogeneous linear differential equations (30) may be
obtained using any of the well known standard methods of linear algebra. One may
wish to apply modal analysis to equation (30) and obtain the uncoupled forced equa
tions of motion[l31. If the modal damping ratios are known, then one can easily intro
duce the damping terms in the uncoupled equations and carry out the damped re
sponse analysis. For the sake of simplicity, we solve equation (30) for the case where
the dimension of [m] and [K] is 2x2. Using the impedance methodl 13] to solve equa~

tion (30), and using equations (15) through (18), one obtains the dimensionless equ
ations

m b ql = If.. [(1 - b l 132
) cMz) - b2f3

2 cMz) ]
moe d j (1- b1f32) (1,--- b3f32) - b4f34

(31)

(32)
_ = m b q2 = If.. [ (1 - b3f32) ~(z) - bsf32 cMz) ]

q2 moe d2 (1 - b
l

132) (1 - b3f32) - b4f34

where ii j and ii2 are dimensionless amplitudes, and 13 is a dimensionless frequency
Jim z3

parameter defined as 132 = - EIb ,and the other parameters are also dimensionless

defined as follows

bl
= mIl (~) b2

= m l2 ( EI )
K22 mIl K22 m/

}2 2

b3
mll(~) b4

m l2
( :~3 )KII m/ K I1 K22 b (33)

bs = m l2 ( EI ) d l

K11P
m /3 EIK 11 b

d2
K22 P

EI
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The total forced response dimensionless amplitude y(x, t) at a point (x) on the beam
span is then, from equation (3), given ,by

(34)

where ql and q2 are given by equations (31) and (32), respectively, and cPl(X) and
cP2(X) are evaluated from equation (11) for qll and q21, respectively. Note that, reso
nance occurs when the denominator in equations (31) and (32) is zero. Also note
that, the parameter b4 in the denominator of equation (31) and (32) represents the ef
fect of the concentrated mass M on the resonance frequencies. If m 12 = 0 then
b4 = 0 and the system equations of motion given by equation (30) are dynamically
uncoupled so that resonance response occurs at 132 = l/b l and 132 = lib)" Since the b4

134 term in the denominator of e-quations (31) and (32) is subtracted from the products
of the first two terms, it represents a shift to the left (a decrease) in the resonance fre
quency, which is in agreement with the known physical fact that adding an inertia to
a vibrating system leads to a decrease in system natural frequencies.

Figures 2 through 4 shows the variation of the dimensionless response amplitude
.v(x ) at x = I with the dimensionless frequency parameter13 for various values of stiff
ness parameter S, mass ratio I.L and relative position z of the concentrated mass and
the rotating unbalance. All numerical computations were programmed on the VAX!
VMS version 4.4 digital computer using double precision. It can be easily seen from
these figures that increasing the stiffness ratio S results in an increase in the reso
nance frequecies, while increasing either mass ratio I.L or the relative position z results
in a decrease in the resonance frequencies, as one would expect. Note that, the above
linear analysis is valid provided that the mass ratio J.L is small enough not to produce
large static deflection of the beam, as initial experimental work currently being car
ried out shows that the system in such a case may exhibits nonlinear and chaotic be
havior.
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FIG. 2. Effect of variations of stiffness parameter S on the resonance response for mass ratio J..L = 0.5 and

mass position Z = 0.5.
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6. Conclusion

The effects of the stiffness of translational spring attached to the tip of a cantilever
beam, and the effects of the magnitude and location of the intermediate concen
trated mass on the free and forced vibrations of the beam are investigated. The
analysis was carried out by treating the concentrated mass as an external loading and
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using Galerkin's method in conjunction with the mode shape functions which satisfy
all natural and geometric boundary conditions of the beam. The results of the present
method compared well with those of other methods, however, the present method
has advantages in terms of computational effort, clarity and applicability tq- more
complex systems. Such as beams with more complex boundary condition(s and carry
ing elements having rotary inertia.
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