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Abstract. This article considers the analysis of experiment of one-
way completely randomized design (one-way ANOVA) that is
frequently used in every discipline. We investigate a common prob-
lem that is data collected in practice usually violate parametric
assumptions to some degree. We concentrated our attention on
ANOVA when the equal variances assumption for the treatment
groups is violated. We investigate the performance of a general linear
fixed effects model approach (GLM procedure of the SAS System) in
analyzing one-way ANOVA under the violation of only one assump-
tion that is heterogeneous variances. Also, we investigate the perfor-
mance of a general linear mixed effects model approach (MIXED
procedure of the SAS System) in analyzing one-way ANOVA under
the violation of only one assumption that is heterogeneous variances
as alternative to GLM procedure of the SAS System. The main result
of our article is that the general linear mixed effects model approach
can be recommended to be used in case of the suspicion of the viola-
tion of the equal variances assumption specially in case of unbalanced
data where the general linear fixed effects model approach showed
serious departures upward from the nominal level. 
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1. Introduction

This article considers the analysis of experiment of one-way completely random-
ized design (one-way ANOVA) that is frequently used in every discipline. Sir R.
A. Fisher[1], explained the relationship between the mean, the variance, and the
normal distribution as follows: �The normal distribution has only two character-
istics, its mean and its variance. The mean determines the bias of our estimate, and
the variance determines its precision�. When the variances of treatment groups are
unequal, the comparison may be invalid. In this article, we investigate the perfor-
mance of a general linear fixed effects model approach (GLM procedure of the
SAS System) in analyzing one-way ANOVA under the violation of only one
assumption that is the equal variances assumption (heterogeneous variances). This
approach is the traditional approach that is usually used in the analysis of ANOVA.
Also, we investigate the performance of a general linear mixed effects model
approach (MIXED procedure of the SAS System) in analyzing one-way ANOVA
under the violation of only one assumption that is heterogeneous variances. We
used the general linear mixed effects model approach to analyze one-way ANOVA
under the violation of only one assumption that is the equal variances assumption
(heterogeneous variances) as alternative to the general linear fixed effects model
approach where the general linear mixed effects model approach has the ability to
accommodate the violation of the equal group variances. The performance of the
two approaches compared in both cases of balanced and unbalanced data.

The model fit by the GLM procedure (the general linear fixed effects model
approach) is[2],

y = Xβ + e

where
X =  N × p design matrix for fixed effects.
β =  p × 1 vector of fixed effects parameter.
e =  n × 1 vector of residuals.

For the usual general linear fixed effects model, it is assumed y ~ N (Xβ,
σ 2I). GLM procedure uses method-of-moments to estimate the variance
component. The mixed effects linear model extends the general linear fixed
effects model approach by allowing a more general specification of covariance
matrix of the vector of Y. The model fit by the MIXED procedure (the general
linear mixed effects model approach) is[3,4].

y = Xβ + Zγ + e (1.1)
where:

β =  p × 1 vector of fixed effects parameter.
γ =  q × 1 vector of random effects parameter.
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e =  n × 1 vector of residuals.
X =  n × p design matrix for fixed effects.
Z =  n × q design matrix for random effects.

γ ~ N (0, G) , e ~ N (0, R) ,

y ~ N (Xβ, V),  and  V = ZGZ' + R .

The general linear fixed effects model is a special case of the general linear
mixed effects model with Z = 0 (which means Zγ  disappears from the model
(1.1)) and V = R = σ2I. MIXED procedure lets us specify various covariance struc-
tures for G and R matrices. When V is known, the best linear unbiased estimators
(BLUE) of estimable functions h'β of the fixed effects in (1.1) are given by

In most applications V is unknown. Therefore, it is estimated from the data
where estimators based on (1.2) are not generally BLUE[5]. Various procedures
proposed for testing hypotheses on fixed effects in mixed models with unknown
V, most of which assume that V is estimated by the REML method[6-8]. The
resulting estimates of fixed effects are often referred to as empirical BLUE
(eBLUE)[5]. Standard error estimates based on (1.3) are biased downwards
when V replaced by its estimate[9]. Fixed effects are estimated based on (1.2),
with V replaced by a plug-in restricted maximum likelihood (REML) estimates.
Null hypotheses of the form H0 : h'β = 0 are tested by

when rank (h) > 1. In general, the test statistics in (1.4) only have approximate
F � distribution. The approximate denominator degree of freedom υ of F �
distribution can be determined using one of the four different methods imple-
mented in MIXED procedure of SAS System. The four methods of the approx-
imations are residual method, containment method (this is the default in
MIXED), extended Satterthwaite[10] method of Giesbrecht and Burns[7] and Fai
and Cornelius[6], and Kenward-Roger[8] method.

2. Methodology

The study considered the one-way completely randomized design. The design
consists of three treatment groups with both equal and unequal number of repli-
cations. The goal of the study is to compare the empirical Type I error rate and
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the empirical power for the two approaches under the two situations of exis-
tence and non existence of the violation of the equal variances assumption in
both cases of balanced and unbalanced data. Unbalancedness (Missing Data)
was generated by randomly dropping certain number of observations. In order
to accomplish the goals of this study, it was necessary to design a simulation
study of one-way ANOVA data. The following model reflects the experiment of
one-way completely randomized design:

Multivariate normal data were generated according to model (2.1). There
were 60 scenarios to generate data involving one covariance structure with 10
settings of covariance matrix parameter values and three different sample sizes
(n = 3, 5, and 10 replications per treatment group). The covariance structure
was a completely general (unstructured) covariance matrix parameterized
directly in terms of variances and covariances. The variances are constrained to
be nonnegative and the covariances are all equal to zero. The 10 settings of
covariance matrix parameter values can be classified into two classes of covar-
iance matrix setting. The first class has equal variances for the treatment groups
and the second class has unequal variances for the treatment groups. The 10
settings are given in Table 1. 

(2.1)  y i j nij i ij= + = =µ ε  ,  where , ,  and , ,...,  .1 2 3 1 2

Table 1. The ten settings of covariance matrix parameter values used in the simulation.

Class Setting no. Covariance matrix Class Setting no. Covariance matrix

1 1 2 6

1 2 2 7

1 3 2 8

2 4 2 9

2 5 2 10

  

10 0 0
0 10 0
0 0 10















  

10 0 0
0 10 0
0 0 100















  

25 0 0
0 25 0
0 0 25















  

10 0 0
0 20 0
0 0 30















  

50 0 0
0 50 0
0 0 50















  

10 0 0
0 30 0
0 0 90















  

10 0 0
0 10 0
0 0 50















  

10 0 0
0 40 0
0 0 160















  

10 0 0
0 10 0
0 0 75















  

5 0 0
0 25 0
0 0 125














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It may be of interest to note that the following commands represent a tradi-
tional analysis of one-way completely randomized design by using the general
linear fixed effects model approach (PROC GLM of the SAS System).

PROC GLM DATA = DAT1;
CLASS     TREATMENT;
MODEL  Y = TREATMENT;
RUN;

Also, it may be of interest to note that the following commands represent the
analysis of one-way completely randomized design under the violation of equal-
ity of variance by using the general linear mixed effects model approach (PROC
MIXED of the SAS System).

For each scenario, we simulated 5000 datasets. SAS (Version 8.02) PROC
IML code was written to generate the datasets. A (n) 3 × 1 vectors of multi-
variate normal were generated using SAS�s NORMAL function[11]. Denoted
the vector:

After the simulated data sets were generated, the simulated data sets were
analyzed using both the two approaches in order to evaluate the performance of
the two approaches. Kenward-Roger method was used for computing the denom-
inator degrees of freedom for the tests of fixed effects from all the analyses with
the PROC MIXED procedure for the following reasons: 1) Kenward and Roger[8]

found good performance of their method across a number of design, 2) Guerin
and Stroup[12] recommended using the Kenward-Roger method as standard
operating procedure, and 3) One of our previous simulation study was in good
agreement with findings of the previous authors. In our investigations, the eval-
uation of the analysis was in terms of control of Type I error, and the power.
Type III sums of squares and its associated statistics were used in the analysis
that is corresponds to Yates� weighted squares of means analysis. In case of a
valid alternative hypothesis, the values of fixed effect used under the alternative
are summarized in Table 2. 
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Table 2.  Marginal means in case of validity of the alternative hypothesis.

Levels of treatment effect Marginal mean

1 �3

2   0

3   3
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PROC MIXED DATA = DAT1;
CLASS     TREATMENT;
MODEL  Y = TREATMENT / DDFM = KR;
REPEATED  / GROUP = TREATMENT;
RUN;

Note that TREATMENT identifies the treatment groups and Y identifies the
response variable[13].

3. Results

3.1  Results Under the Null Hypothesis

Due to space limitations, we present only part of the total simulation results
of the 60 scenarios. The complete results are available from the author upon
request. Table 3 summarizes results of the average of the empirical Type I error
rate across the first class of the investigated settings of covariance matrix, when
data are simulated under the null hypothesis and no assumption violations are
existed, for the two approaches with the three different sample sizes in both
cases of balanced and unbalanced data. Table 4 summarizes results of the aver-
age of the empirical Type I error rate across the second class of the investigated
settings of covariance matrix, when data are simulated under the null hypothesis
and the equal variances assumption is violated, for the two approaches with the
three different sample sizes in both cases of balanced and unbalanced data.
Table 3 indicates that although the nominal level was controlled well with the
two approaches for both the cases of balanced and unbalanced data, slight
downward departures were observed with the general linear mixed effects
model approach for balanced data case particularly for small sample size. Table
4 indicates that the general linear mixed effects model approach provided the
best control of the nominal error probability for both cases of balanced and
unbalanced data. On the other hand, the general linear fixed effects model
approach shows serious upward departures and it is getting worse for the unbal-
anced data case. As expected, control of the nominal error probability improved
with increasing sample size for the balanced data case.

3.2 Results Under the Alternative Hypothesis

In order to help in the interpretation of empirical power results, the noncen-
trality parameter for each effect is reported. The noncentrality parameter was
computed by β 'h(h'(X'V�1X)�h)�1h'β for each simulation run and average
across runs. Table 5 reports the average of the noncentrality parameter across
the first class of the investigated settings of covariance matrix, when data are
simulated without violation of any assumption, for the two approaches with the
three different sample sizes in both cases of balanced and unbalanced data.
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Table 6 reports the average of the noncentrality parameter across the second
class of the investigated settings of covariance matrix, when data are simulated
with the violation of the equal variances assumption, for the two approaches
with the three different sample sizes in both cases of balanced and unbalanced

Table 3. Average of the empirical Type I errors across the first class of the investigated covar-
iance settings for F-test under the null hypothesis (nominal Type I error = 0.05).

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment 0.0482 0.0238666 0.0478 0.0518

Sample size: 5

Treatment 0.0492 0.039       0.05   0.0408

Sample size: 10

Treatment 0.0476 0.0464     0.0488 0.0452

Table 4. Average of the empirical Type I errors across the second class of the investigated
covariance settings for F-Test under the null hypothesis (nominal Type I error = 0.05).

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment 0.0811142 0.0403714 0.1235142 0.0527142

Sample size: 5

Treatment 0.0742285 0.0459714    0.1380571   0.0527142

Sample size: 10

Treatment 0.0679714 0.0492571     0.1275428 0.0503142

Table 5. Average of the Noncentrality Parameter (NCP) across the first class of the inves-
tigated covariance matrix settings.

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment 7.3931907 11.489411   7.448789 15.351142

Sample size: 5

Treatment 8.1769216    9.7156072    6.5162515 12.920849

Sample size: 10

Treatment 12.503809 13.495347 10.280901 11.762313
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data. Table 7 summarizes results of the average of the empirical power across
the first class of the investigated settings of covariance matrix, when data are
simulated without violation of any assumption, for the two approaches with the
three different sample sizes in both cases of balanced and unbalanced data.
Table 8 summarizes results of the average of the empirical power across the
second class of the investigated settings of covariance matrix, when data are
simulated with the violation of the equal variances assumption, for the two
approaches with the three different sample sizes in both cases of balanced and
unbalanced data. Table 7 shows that the empirical powers of the balanced data
case were similar for the two approaches. Also, it showed that the empirical
powers of the unbalanced data case were higher for the general linear fixed
effects model approach comparing to the general linear mixed effects model
approach due to their higher Type I error rates. As expected, the empirical
power improved with increasing sample size for both approaches in both cases
of balanced and unbalanced data. 

Table 6. Average of the Noncentrality Parameter (NCP) across the second class of the inves-
tigated covariance matrix settings.

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment  6.6450683 10.502715     10.14615 19.59795  

Sample size: 5

Treatment 6.7539962 8.3582622  10.061416 19.683221

Sample size: 10

Treatment 8.250965  10.044385         9.1920511     9.3716447

Table 7. Average of the empirical power across the first class of the investigated covariance
matrix settings of F-Test under the alternative hypothesis.

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment  0.1997333 0.0898666 0.1614666 0.0821333

Sample size: 5

Treatment 0.3756666 0.307        0.2477333 0.1853333

Sample size: 10

Treatment 0.6370666 0.6113333 0.5452666 0.5063333
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Finally, Table 9 shows the rejection rate of testing the homogeneity of vari-
ances for the treatment groups using the likelihood ratio test for the ten inves-
tigated covariance matrix settings. Table 9 (The first covariance class) indicates
that although the control of the nominal error probability improved with
increasing the sample size for both cases of the balanced and unbalanced data,
slightly more departures upward were observed with the case of the unbalanced
data comparing to the case of the balanced data. On  the other hand, Table 9
(The second covariance class) indicates that although the empirical powers
improved with increasing the sample size for both cases of the balanced and
unbalanced data, the empirical power was higher for the case of the balanced
data as compared with the case of the unbalanced data.

4. Conclusion

In our simulation, we considered one-way completely randomized design
(one-way ANOVA), looking at the performance of  two approaches that are a
general linear fixed effects model approach and a general linear mixed effects
model approach with different settings of the covariance matrix. The main
result of our article is that overall, the general linear mixed effects model
approach provided the best control of the nominal Type I error rate. Thus, this
approach can be recommended to be used with the suspicion of the violation of
the equal variances assumption specially in case of unbalanced data where the
general linear fixed effects model approach showed serious departures upward
from the nominal level. These results are in good agreement with the theory that
suggests accommodating the violation of the equal variances assumption in the
analysis. In addition, our power analysis showed that power was larger when
the Type I error rate was on the liberal side. Thus, differences in power among
the approaches were mainly due to differences in Type I error control. The
power differences between the effects can be explained mainly by differences in

Table 8. Average of the empirical power across the second class of the investigated covar-
iance matrix settings for F-Test under the alternative hypothesis.

Sample size: 3

Effect Balanced data Unbalanced data

PROC GLM PROC MIXED PROC GLM PROC MIXED

Treatment 0.1670571 0.0828857 0.2093142 0.0669428

Sample size: 5

Treatment 0.2927142 0.2732285 0.3496857 0.1389714

Sample size: 10

Treatment 0.4518571 0.5193428 0.4650285 0.40080   
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the noncentrality parameter. Further simulation need to be performed for this
design to see if the main results of our article stay the same under the violation
of other assumptions.
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