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Abstract.  In this paper, continued fraction expansion of the error
function is developed. An efficient and simple computational al-
gorithm based on this expansion is also developed using top-down
evaluation procedure. Numerical results of the algorithm are in full
agreement at least to fifteen digits accuracy with that of the standard
tables.

Introduction

The error function erf(z) is the integral of the Gaussian distribution, given by

and is an entire function of z with no branch cut discontinuities.

The error function is central to many calculations in statistics, for example
the inverse error function is defined as the solution for z in the equation s = erf
(z). The inverse error function appears in computing confidence intervals in sta-
tistics as well as in some algorithms for generating Gaussian random numbers.
On the other hand the error function plays very serious role in many problems
of space dynamics. Of these problems are for examples, orbit determination of
space objects[1] and space navigation problems[2]. Moreover, the error function
is now of common appearance in the determination of cosmic distances[3].

There are several methods available for the evaluation of integral (1), all de-
pending on polynomial evaluations with different degrees of accuracy[4,5].

In fact, continued faction expansions are, generally, far more efficient tools
for evaluating the classical functions than the more familiar infinite power se-
ries. Their convergence is typically faster and more extensive than the series.

  
erf( ) –z d= ∫
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Due to the above importance of erf(z), and on the other hand, due to the ef-
ficiency of the continued fraction for evaluating functions are what motivated
the present work: to establish computational algorithm for the function erf(z)
based on its continued fraction expansion.

erf(z) In Terms of Confluent Hypergeometric Functions

■ Recalling Equation (1) we have

Since
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■ That is
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where

(η)
j
 = η(η +1) (η + 2) ... (η + j � 1)    ;    (η)

0
 = 1.

■ From the above equation it follows that
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where M(β, γ; z) is the confluent hypergeometric function defined in terms of
the hypergeometric function F(α, β, γ; z) as :

M(β, γ; z) = limα→∞ F(α, β, γ; z / α) (2)

that is

According to Kummer transformation [e.g., See[5]] which is

M(β, γ; z) = ez M (γ � β, γ; �z) ,

then
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Continued Fraction Expansion of erf(z):

■ The confluent hypergeometric functions satisfy the identities[6]

  

M z M z zM z

M z M z zM z

( , ; ) – ( , ; )
( )

( , ; )

( , ; ) – ( , ; ) –
( )

( )( )
( , ; )  .

β γ β γ γ β
γ γ

β γ

β γ β γ β
γ γ

β γ

+ + = −
+

+ +

+ + + + = +
+ +

+ +

1 1
1

1 2

1 2 1 1
1

1 2
2 3

 (4)

 (5)

■ Consider the following sequence of confluent hypergeometric functions de-
fined for n = 0, 1, 2.

M2n = M(β + n, γ + 2n; z) , (6)

M2n+1 = M(β + n + 1, γ + 2n + 1; z) , (7)

■ From identities (4) and (5) we have

M2n+1 � M2n= δ2n+1  zM2n+2 , (8)

M2n � M2n�1 = δ2n  zM2n+1 , (9)

where the odd -and -even labed δ 's are determined from

  
δ γ β

γ γ2 1 2 2 1n
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■ Devide Equation (8) by M2n and divide Equation (9) by M2n+1 and define
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then we get
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■ If we put successively n = 0, n = 1, etc., we derive a continued fraction ex-

pansion for G0 = M1 / M0.
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and letting n becomes infinite results in an infinite continued fraction.

■ Now since M(0, γ,; z) = 1, then the continued fraction of Eq. (14) represents
the function M(1, γ + 1, z). Therefore, if we replace γ by γ � 1, we get
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where
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Finally, from Eq. (15) and (16) we get for the error function the required con-
tinued fraction as
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Computational Developments

Top-Down Continued Fraction Evaluation

There are several methods available for the evaluation of continued fraction.
Traditionally, the fraction is either computed from the bottom up, or the numer-
ator and denominator of the nth convergent were accumulated separately with
three term recurrence formulae. The drawback to the first method is, to decide
far down the fraction to being in order to ensure convergence. The drawback to
the second method is that the numerator and denominator rapidly overflow nu-
merically even though their ratio tends to a well defined limit. Thus, it is clear
that an algorithm which works from top down while avoiding numerical dif-
ficulties would be ideal from a programming standpoint.

Gautschi[7] proposed a very concise algorithm to evaluate continued fraction
from the top down and was recently applied very successfully for the initial val-
ue problem[8]. Gautchi�s algorithm may be summarized as follows. If the con-
tinued fraction is written as:
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then initialize the following parameters

a1 = 1,

b1 = n1 / d1,

c1 = n1 / d1
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In the limit, the c sequence converges to the value of the continued fraction.

Numerical Results

Top-down continued fraction algorithm was applied for the error function
erf(z) [Equation (17)] to construct Table 1 erf(z), z = 0(0.1) 2.9 up to fifteen
digits accuracy. Within this accuracy, our results agree completely with those
given in[5].

In concluding the present paper, an efficient and simple computational al-
gorithm for the error function erf(z), z ≥ 0 was established using continued frac-
tion expansion. Numerical results of the algorithm are in full agreement at least
to fifteen digits accuracy with that of the standard tables.

Table 1. Values of the error function using continued fraction.

z erf(z) z erf(z) z erf(z)

0  0             1.0 0.842701 2.  0.995322

0.1 0.112463 1.1 0.880205 2.1 0.997021

0.2 0.222703 1.2 0.910314 2.2 0.998137

0.3 0.328627 1.3 0.934008 2.3 0.998857

0.4 0.428392 1.4 0.952285 2.4 0.999311

0.5 0.5205    1.5 0.966105 2.5 0.999593

0.6 0.603856 1.6 0.976348 2.6 0.999764

0.7 0.677801 1.7 0.98379  2.7 0.999866

0.8 0.742101 1.8 0.989091 2.8 0.999925

0.9 0.796908 1.9 0.99279  2.9 0.999959

and iterate (k = 1, 2, ...) according to
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