First Order Uniform Solutions for Systems of General Odd Nonlinearities

A.S. Al-Fhaid
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

In this paper, first order uniform solutions with respect to small parameter ε are established analytically for systems of general odd nonlinearities.

Introduction

The free oscillations ${ }^{[1]}$ of many conservative systems having a single degree of freedom are governed by an equation of the form

$$
\ddot{x}^{*}+f\left(x^{*}\right)=0
$$

where f is a nonlinear function of x^{*}. Here, \ddot{x}^{*} is the acceleration of the system, where $f\left(x^{*}\right)$ is the restoring force. If $x^{*}=x_{0}^{*}$ be an equilibrium position of the system (i.e. $f\left(x^{*}\right)=0$) and f is an analytical function at $x^{*}=x_{0}^{*}$; then it can be expanded in a Taylor series and we get a dimensionless equation of the form ${ }^{[2]}$,

$$
\ddot{\boldsymbol{u}}+\omega_{0}^{2} \boldsymbol{u}=\varepsilon \sum_{j=1} k_{j} \boldsymbol{u}^{j}
$$

where ε is a dimensionless quantity, u is a dimensionless variable and ω_{0} is a constant, the dot denotes the derivative with respect to the dimensionless time t.

In this paper, first order uniform solutions with respect to small parameter ε are established analytically for systems of general odd nonlinearities of the form

$$
\begin{equation*}
\ddot{\boldsymbol{u}}+\omega_{0}^{2} \boldsymbol{u}=\boldsymbol{\varepsilon} \boldsymbol{u}^{2 l+1} \tag{1}
\end{equation*}
$$

First Order Uniform Solution

In this section, an analytical first order uniform solutions of Equation (1) will be established for any possible non-negative integer values of l. To do so we shall use the method of multiple scales ${ }^{[3]}$ as follows

- Introduce the scales

$$
\begin{equation*}
T_{0}=\boldsymbol{t} ; T_{1}=e \boldsymbol{t} \tag{2}
\end{equation*}
$$

then using the chain rule, Eq. (1) to the first order could be written as

$$
\begin{equation*}
\frac{\partial^{2} \boldsymbol{u}}{\partial T_{0}^{2}}+2 \varepsilon \frac{\partial^{2} \boldsymbol{u}}{\partial T_{0} \partial T_{1}}+\omega_{0}^{2} \boldsymbol{u}=\varepsilon \boldsymbol{u}^{2 l+1} \tag{3}
\end{equation*}
$$

- Let

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{0}\left(T_{0}, T_{1}\right)+\varepsilon \boldsymbol{u}_{1}\left(T_{0}, T_{1}\right) \tag{4}
\end{equation*}
$$

in equation (3) and equate like power of ε we get

$$
\begin{align*}
& \frac{\partial^{2} \boldsymbol{u}_{0}}{\partial T_{0}^{2}}+\omega_{0}^{2} \boldsymbol{u}_{0}=0 \tag{5}\\
& \frac{\partial^{2} \boldsymbol{u}_{1}}{\partial T_{0}^{2}}+\omega_{0}^{2} \boldsymbol{u}_{1}=-2 \frac{\partial^{2} \boldsymbol{u}_{1}}{\partial T_{0} \partial T_{1}}+u_{0}^{2 l+1} \tag{6}
\end{align*}
$$

- The solution of Equation (5) is

$$
\begin{equation*}
\boldsymbol{u}_{0}=\boldsymbol{a}\left(T_{1}\right) \cos \left[\omega_{0} T_{0}+\beta\left(T_{1}\right)\right] \tag{7}
\end{equation*}
$$

then

$$
\frac{\partial^{2} \boldsymbol{u}_{0}}{\partial T_{1} \partial T_{0}}=-\boldsymbol{a} \omega_{0} \frac{\partial \beta}{\partial T_{1}} \cos \left(\omega_{0} T_{0}+\beta\right)-\omega_{0} \frac{\partial \boldsymbol{a}}{\partial T_{1}} \sin \left(\omega_{0} T_{0}+\beta\right)
$$

and Equation (6) becomes

$$
\begin{aligned}
& \frac{\partial^{2} \boldsymbol{u}_{1}}{\partial T_{0}^{2}}+\omega_{0}^{2} \boldsymbol{u}_{1}=2 \boldsymbol{a} \omega_{0} \frac{\partial \beta}{\partial T_{1}} \cos \left(\omega_{0} T_{0}+\beta\right)+2 \omega_{0} \frac{\partial \boldsymbol{a}}{\partial T_{1}} \sin \left(\omega_{0} T_{0}+\beta\right)+ \\
& +\frac{(2 l+1)!}{2^{2 l}} \boldsymbol{a}^{2 l+1}\left\{\frac{1}{(l+1)!l!} \cos \left(\omega_{0} T_{0}+\beta\right)+\sum_{n=1}^{l} \frac{1}{(l+n-1)!(l-n)!} \cos \left[(2 n+1)\left(\omega_{0} T_{0}+\beta\right)\right]\right\}
\end{aligned}
$$

- Eliminating the mixed secular terms in the above equation yields

$$
\begin{align*}
& 2 \omega_{0} \frac{\partial a}{\partial T_{1}}=0 \tag{8}\\
& 2 a \omega_{0} \frac{\partial \beta}{\partial T_{1}}+\frac{(2 l+1)!}{2^{2 l}(l+1)!l!} a^{2 l+1}=0 \tag{9}
\end{align*}
$$

- From Equation (8) it follows that \boldsymbol{a} is constant and Equation (9) yields

$$
\frac{\partial \beta}{\partial T_{1}}=-\frac{1}{2 w_{0}}\left(\frac{a}{2}\right)^{2 l}\binom{2 l+1}{l}
$$

since $T_{1}=\boldsymbol{\varepsilon} \boldsymbol{t}$, then

$$
\beta=-\frac{\varepsilon}{2 \omega_{0}}\left(\frac{\boldsymbol{a}}{2}\right)^{2 l}\binom{2 l+1}{l} t+\beta_{0}
$$

where β_{0} is constant.
Finally, the required first order uniform solutions of the generalized Equation (1) are

$$
\boldsymbol{u}=\boldsymbol{a} \cos \left[\left\{\omega_{0}-\frac{\varepsilon}{2 \omega_{0}}\left(\frac{\boldsymbol{a}}{2}\right)^{2 l}\binom{2 l+1}{l}\right\} t+\beta_{0}\right]
$$

References

[1] Shivamoggi, K.B., Perurbation Methods for Differential Equations, Birkhäuser, Berlin (2003).
[2] Hinch, E.J., Perurbation Methods, Cambridge University Press, Cambridge, UK (1991).
[3] Nayfeeh, A.H., Introduction of Perurbation Techniques, John Wiley and Sons, New York (1973).

حلول الرتبة الأولى المنتظمة لنظم غير خطية من درجة فردية عامة

عبدالرحمن صالح الفهيد

 جــــــة - المملكة العربية السعودية
المستخاص. تم في هذا البحث تشييـد الحلول التحليلية المتظمة من
الرتبة الأولى بالنسبة إلى بار امتر صغير ، وذلك لنظم غير خطية من أي
رتبة فردية.

