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Product Formula for Imaginary Resolvents and its Application
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ABSTRACT. In this paper we study a product fonnula for imagin~ resol-
vents of the Schrodinger operator -~ + q as well as elliptic differential
operators (generalized Schrodinger operators) of a complex Hilbert space
H under the conditions [q], [ak] and [bk].

The resolvents and related functions are given by an integral kernel,
which is bounded by a convolution with a radial decreasing L\- function. We
examine the weakest conditions under which the Schrodingerequation

i ~ = Ku , with u(x,O) = v(x) , V E D(K)

and K the realization in H of the Schrodinger operator. (a,ndthe generalized
SchrOdinger operator), can be solved. The solutionis represented as a se-
quential limit of finite dimensional integrals involving the kerne[ of the
imaginary resolvent of (-~) and ( I akDk).

kst

Introduction

Trotterfl], Kato!2.3] and others have proved the existence of the limit

lim (e-i(t/n) T ei(t/n) S)n , where
n-+oo

T and S are self-adjoint operators. 1fT +S is essentially self-adjoint, then T + S has
a unique self-adjoint extension K and by Trotter's theorem, we have:

lim .( e-i(t/o)T e-i(t/o) S)o = e-itK (1)
n-+~
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which is known as "Trotter's formula". Under certain conditions on S Kato[4], using
Chernoff's lemma, has proved the existence of this formula in the special case ofT =
-~ and S is a complex-valued measurable function. A generalization of Kato's
theorem has been given by Barry Simon. These results can be applied to great variety
of operators. Trotter's formula has also been verified by Kato[3] when T and S are
nonnegative self-adjoint operators in a Hilbert space.

Lapidus[4] has shown that if the unitary groups generated by T and S are replaced
by their associated imaginary resolvents, the corresponding product formula holds
for a pair of nonnegative self-adjoint operators T and S, i.e.:

lim ([I + i(tln)T]-l [I + i(t/n)S]-l )0 = e-itk (2)
n-+~

where K denotes the form sum of T and S.

By a somewhat different method Lapidus[4] obtained the product formula (2) for
self-adjoint operators T and S, where T is nonnegative and it is essential that S has an
unbounded negative part.

It is noteworthy that Kato[2,3] was interested in the behaviour of semigroups and
not that of the resolvents. Furthermore Lapidus was interested in the behaviour of
the resolvents of S, T and K = T + S. The functions (z -A)-l and exp (-tA) are re-

lated and many properties of one can be translated into appropriate properties for
the other. However, for Schrodinger operators the study of semigroup precedes the
study of the resolvent. Here we shall adopt and use the "Feynman integral" to search
for the solution of the Schrodinger equation. As a matter of fact the resolvents ker;.
nels of (-~) and of elliptic differential operators and some other related functions
have been studied in Gurarie and Gurarie and Kon[5,6].

In this paper we explore possible extensions of Lapidus's results to elliptic diffe-
rential operators (generalized Schrodinger operators).

First we recall some notations and definitions as follows: The space Lp(Rm) is de-
fined to be the set of measurable functions f such that 11~lp = (f I~P JL ) IIp < 00, 1 ~ P <
00 where JL will be the Lebesgue measure and Rm is m-dimensional real space.

Lp,loc(Rm) is the set of functions which lie in Lp(W) for each compact W C Rm.
C~(Rm) denotes, the space of infinitely many times differential functions with com-
pact support. W (Rm) denotes the set of functions f such that for o~ I kl ~ r all the

p,r
weak derivatives Dkf exist and are in Lp(Rm), and equip W p,r (Rm) with a scalar pro-
duct and norm as follows:

<f , g > r = I J Dkf Dkg dx, II~I~ = I JIDkf12 dx.
Ikl~r Ikl~r

W (Rm) is called a Sobolev space of order r. D(T} denotes the domain of the
ope~ator T. A multi-index k is an n-tuple (k1, k2 ,..., kJ of non-negative integers.
We write K = k1 + ...+ kn. ForxERm,
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D~m , where Dj = J!-.Xkm and Dk = Dkl
m 1

k -
X kl

X-I oX.
J

The operator Tp = I akDk is known as the principle part ofT = I akDk,
Ikl=r Ikl"'r

A real-valued measurable function q on Rm is to lie in Om if and only if

i) lim (suPx f Ix -yp-m \q(y)ldmy) = 0, if m ~ 3
a-o Ix-yl",a

ii) lim (suPx f In(lx -yl-l) Iq(y)ld2y) = 0, if m = 2
a-o Ix-yl",a

iii) suPx f Iq(y)1 dy < 00 , ifm = 1.
Ix-yl'" 1

The operator B is said to be A-bounded ifD(A) C D(B) and there exist b ~ 0 and
a ~ 0 such that IIB~I ~ all~1 + b IIA~I (*), for all f E D(A). The infimum of all b ~ 0 for
which an a ~ 0 exist such that (*) holds is called the A-bound orB.

I. SchrOdinger Operator (-11 + q)

In this section we study the following example:

Let T = -~ be the negative Laplacian operator in L2(Rm), m ~ 3 and let S be the
multiplication operator on L2(Rm) with a real-valued function q with the following
condition [q] :

[q] q+: = max (q,o) , q+ EL1,loc(Rm)

q_: = max (-q,o) , q- EQm.

To prove that (2) holds for this example we use theorem 1 in Lapidus[7]. This theorem
is applicable if we show that the operator T + S is essentially self-adjoint on D(T) n
D(S) with T = -~, Sis a multiplication operator by q. In this case there exists a un-
ique self-adjoint extension ofT + S which coincides with the form sum T -+- S, i.e. the
form sum T -+- S is the realization of the Schrodinger operator T + S. To prove the
existence of a unique self-adjoint extension -~ + q we show that -~ + q is essen-
tially self-adjoint. For that we prove that q_is form- (- ~)- bounded with (-.~) form-
bound < 1, D (-~) C D(q_), (see, Lapidus[7]).

For that we have to show that:

II Iq-ll/2~r = It(f,f)1 ~ a ( (f,-~) + z211~f) = a (II< -~+ Z2)1/2 ~r) ,

for arbitrary small a > 0 if Z2 is chosen appropriately. Thus it suffices to show that

IIWzll~ 0 as z~ 00, where

Wz = Iq-ll/2 (- ~ +Z2)-1/2 (see Hempel[8]).

Since IIW zll = IIW z W:II1/2, it suffices to show that IIW z W:II ~ 0, as Z ~ 00.

It is clear that W z W: ::J jq-r/2 (- ~ + Z2)-1 Iq-r/2, where (- ~ + Z2)-1 is an integral
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operator with the kernel G(r,z)

and
c(m) r2-m

IG (r,z)l~

m-l m-3

-~lzl~c(m) r

Now, for U E D (lq-ll/2) let us define

g(y) = f G(r,z) Iq-(x)ll/2 u(x) dx.

Then we have

IIWz W;ull = Illq-ll/2gJP = Ilq-(y)llg(y)j2dy = IIIG(r,z) Ilq-(x)/lu(x)Plq-(y) I dxdy~

sup I IG(r,z)llq-(x)1 dx II Iq-(y) I IG(r,z)1 lu(x)12 dx dy
YERm

= Cz f f Iq-(y)IIG(r ,z)llu(x)12 dx dy, where

Cz = sup f IG(r ,z)llq-(x)1 dx.

YEarn

Let Cz = 11 + 12 ' then

11 = sup f

YERm Ix-YI<lzl-J
IG(r,z)II~(x)1 dx

and

12 = SUp f IG(r ,z)/Iq:..(x)1 dx .
m r1

YER Ix-yl>1z

By using the estimation of the function G(r,z) we get

f IG(!x -yl ,z)llq-(x)1 dx ~
Ix-yl</zr1

c(m) f Ix -yp-m /q-(x)j dx
Ix-yl<lzil

The condition [q] implies that q- E Qm' m~ 3, i.e.

f Ix -yp-m Iq-(x) I dx -+ 0, as z -+ 0()
Ix-YI<lzl-1

Hence II ~ 0, as z ~ 00.

Also by using the estimation of the function G(r,z) and the condition [q] we can

show that I2~ 0, as z~ 00. Therefore cz~ 0, as z~ 00. This implies that:

IIWzW:II~ 0, asz~ 00, i.e.IIWzll~ 0, asz~ 00.
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Hence ~ is -~ -form bounded with relative bound < 1. This proves that the
operator -~ + q is essentially self-adjoint. Thus there exists a self-adjoint extension
of -~ + q which we denote.by K.

Hence by the theorem (1) mentioned by Lapidus[7],
Jim ([I + i(t/n) (-A)]-l [I + i(t/n)q]-l)D f = e-itK f,
n--+~

for aftf E H, uniformly in t on bounded subsets of R.

In order to find the unique solution of the Schrodinger equation

; au = Ku , with u(x,o) = v(x) , vED(K) and K =; -A+q (3)-
at

we apply theorem (2) by Lapidus[7] and the estimations of the kernels of the resol-

vents of -~.

The unique solution of (3) is given by:

u(x,t) = (e-itKv) (x) , t E R, x E Rm.

Since q+ E L1,IOC(Rm) and q- is -~ -form bounded with relative bound < 1, the
modified Feynman integral converges and theorem (2) mentioned by Lapidus[7]
holds. Therefore the solution of (3) is represented by a modified Feynman path in;'

tegral as follows:

For all v E L2(Rm) and almost every x E Rm

(e-itK v) (x) = lim J ...J Fjxo ,..., xn,t) (4)
n-+'" Rm Rm

n
X 1T (1 + i(t/n) q(X) )-1 V(XJ dx1

i~1

dxn '

where we have set Xo = x and F n (xo ,..., xn,t) is the nth iterated kernel of the convolu-

tion operator [I -i(t/n) ~]-1,

(5)
n, xn,t) = 1T G(~l' Xy; tin)

j=l
F n (xo

The convergence in (4) holds in ~(Rm) and isunifqrm in tonbounded subset ofR:
The function G(Xj-l ' Xj ; tin), m ~ 3 turns out to be an expression in terms of the Bes-

sel's functions of 3rd order and it is given by:

(6)

, tin) is the Bessel's function of 3rd order.where H~-l (Xj , Xj-
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Therefore from (5) and (6),

t )m/2 -; (i/4, xn ' t) -j=I 2 'Tf n l"i -xi -11 H(I)
m
2

F n(xO '

m
1-2

= (-1!--)(mI2-1)D.~ IXj-Xj-ll
8 1TO J=J

H(I)
m
1-1

(7).
Substitute (7) in (4); we get

~

(e-itK v) (x) = lim I
n--+oo Rffi fm

R

m
i t ( "2 -l)n n

(-8 ) 'IT Ix. -x. 1(1-m/2)
'IT n j=l J J-I

x Hg>
2-

(Xi' xi -1 , tin) (1 + i(tln) q(x) )-1 V(Xn) dx] dxn'

Let us consider a continuous path w connecting Xo to Xu in time t such that

w(o) = Xo' w(t) = Xu and the Xj lie in w. Hence '-lr {I + i (t / n) q(x) )-1 is an
;=1

approximation for exp (-i r
0

q(w(s» ds)

This implies that

(e-itKv)

dxn (8)

Remark: We note that the radial function H~l) (z) can be taken to be

r Izl-d , if 0 < Izi ~ 1 , d > 0
H~l) (Z) =

Izl-l/2 , if -Izi > 1

Hence the Schrodinger equation can be solved under the weakest condition [q] on
q. The unique solution is given by (8). Also under the condition [q] the product for-
mula (2) holds and hence the result.

H. Elliptic Differential Operator

In this section we consider elliptic operator T = A + Bon Rffi under the following
conditions [ak] and [bk] :

) = f...
Rm

X ~)
2-1

(Xi' Xi-I' tIn) V(X)) e-ill q(w(s»dsdn X
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[aJ : T whose leading part A, where A = I ak(x)Dk is uniformly elliptic
k~r

differential operator, i.e. the leading symbol a(x,y) = I ak(x)yk satisfies the
condition, cIty!' ~ a(x,y) ~ czly!,uniformlyinxERm. We assume that the coefficients
ak(x} are sufficiently smooth and bounded with sufficient nuntber of their deriva-

tives.

Now the conditions on Bare:

[bk] : The operator B = I bk (x)Dk (order B ~ order A), have coefficients bk E

L1 loc (!d7{m). We introduce for each term bkDk, its "fractional order", s =!!. +
k ' I

-k

Ikl ~ r, (this condition is needed to have B bounded relative toA). For higher-order
coefficients bk we assume that I Ilbkll < 1. Finally let bk E Llk + L~

k

To prove the existence of the product formula for the operators A and B under the
above conditions [ak] and [bk] we show that there exists a self-adjoint extension K of

A + B as follows:
each term of the operator B(z -A)-l = I bkDk(z -A)-l is composed of two

k
operators T I and T 2' where T I is a multiplication operator withbk and T2 is a convulu-
tion with kernel Es(X) = F-I (Zk(Z -a(z))-l). Gurarie[S] and Gurarie and Kon[6] have
proved the following estimation:

IIB(z -A)-III ~ c(9) pd/(r-l) (9),

c(9) = 0191-00 (00 > 0) , z = pei6,

taking the following considerations:

1) The radial function H B is given by:
!",

r Izl-!" , Izi ~ 1
H (z) =

1",8 Izl-8 Izi > 1 ,

where-oo < B < 00 and ~ is the degree of smoothness ofa(x,y) illY ato.

2) For each term bkOk the "fractional order" condition is imposed.

3) The Leibnitz's rule has been used in the sense that,
Ok(Z -A)-l f = I 'k \ «z -a)-l)k-i Qif

o,.;i,.;k

4) The iterated chain rule for derivatives of (z -a)-l has been used,

.ai
(z -a )-l = Ic (y -a )-l- 1* ail a

x .1 .) x ,
J .., J 1

+ jl = j, the summation being taken over all partitions of j into the

1 

~ I ~ ul ,jl +
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sum of multiindeces jl ...jl and c 1 .) being certain universal combinatorial coeffi-
cients. 1 ...J

As a corollary of this estimation (9) we conclude the following:

1) a priori estimates for the operators A and B is

IIB~lp ~ E IIA~lp + AE 11~lp , 1 ~ P ~ min lk (10)

for allf in D(A) in Lp' 0 < E = cp I Ilbkll , AE > o.

2) the fact that D(B) :)D(A) implies that D(A + B) = D(A).

With a appropriate choice for cp and Illbkll < 1 (see the condition [bkD, a priori es-
timates (10) is used along with Kato-Rellich theorem to prove the essential self-ad-
jointness of the operator A + Bon D(A), if A + B is formally symmetric.

Hence the operator A + B has a unique self-adjoint extension K which coincides
with the realization of A + B.

Consequently and by use of theorem 1 due to Lapidus[7] we conclude that

lim ([I + i(tln)A]-l [I + i(tln)B]-l )0 = e-itk ,
o-~

uniformly in t on bounded subsets of R.

As for the solution of the Schrodinger equation (3) with K = A + B we use the
theorem (2) in Lapidus[7] and the estimations of the radial bounds for the resolvents
of the operator A (see[S,6]).

The unique solution of the Schrondinger equation is given by:

u(x,t) = (e-itKv) (x), t E R, x E Rffi.

By the theorem (2) in Lapidus[7] we can express this solution as follows:

(e-itkv) (x) = lim I... I FJXO,Xl ,..., xn,t)
n--.~ Rffi Rffi

x ::r (1 + i(tln) B(x)-l v(xn) dx1
j=l

dxn'

for all v E H and almost every x E Rm, where x = Xo and F n(Xo '
erated kernel of the convolution operator [I -i(tln)A]-l,

, Xn ; t) is the nth it-

Fn(xo'...' xn ; t) = f G("i-l' Xj ; tin) .(12)
j=1

The convergence in (12) holds in Lz(Rm) = H and is uniform int on bounded sub-
sets of R.

The estimations of the function G(Xj -1 , "i ; (tin)) due to Gurarie[5] and Gurarie
and Kon[6] are given by:
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(izll/r IXi

e-rlmryz

-Xji}-m+r; IXj -1 -XJ ~ 1
IG(Xj -1 , Xj ; z)/ ~ C Izlm/r-

Ixi -1 -xii; l"i -1 -xii < 1

where we set Z2 = n/it, 1m z > o.

Given a continuous path w connecting Xo to xn in time t such that w(o) = Xo ' w(t)
= xn and the Xj lie in w. Hence -

n .( ) ( )) 1 ... f -i rt B(w(s»ds1T (1 + 1 tIn B Xj -IS an approximation or e II
j=1

Since all paths are continuous for each x,

-.". v(w(t» e-i tB(W(S» dsn
v(x(t» 1T (1 + i(t/n) B(x)-!

j=!

Substitute (13) in (1:l) we get

(Izr/r IXi -1 -"iD-m+r ; IXi -1 -xii ~
n

Xn ; t) ~ 'If C Izlm/r-
j=1

F n(xO ' (15)
e-r Imrvz Ix. -x. 1 . Ix. 1 -x. 1 > 1 ,

)-1 )')- )

where Z2 = n/it, I m z > o.

From (14) and (15) in (11) we obtain the solution of the Schrodinger equation (3)
under the conditions [aJ and [bkJ on the coefficients of the operators A and Band
hence the result.
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(4..l,JI.i':-'~J~ .=..I};.o) ~l::J1 .J.,i.lA:J1 .;'~I -y

A= I aDkk k
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