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Product Formula for Imaginary Resolvents and its Application
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ABSTRACT. In this paper we study a product formula for imaginary resol-
vents of the Schrédinger operator — A + q as well as elliptic differential
operators (generalized Schrddinger operators) of a complex Hilbert space
H under the conditions [q], [a,] and [b,].

The resolvents and related functions are given by an integral kemnel,
which is bounded by a convolution with a radial decreasing L, - function. We
examine the weakest conditions under which the Schrédinger equation

i ‘;—‘t’ = Ku , with u(x,0) = v(x) , V e D(K)

and K the realization in H of the Schrédinger operator (and the generalized
Schrédinger operator), can be solved. The solution is represented as a sé-
quential limit of finite dimensional integrals involving the kernel of the
imaginary resolvent of (-A) and ( = a D).

k=t

Introduction
Trotterl!], Katol23] and others have proved the existence of the limit.

lim (eimT giWn)$)n ~ where
n—oc

T and S are self-adjoint operators. If T + S is essentially self-adjoint, then T + S has
a unique self-adjoint extension K and by Trotter’s theorem, we have:

lim (e-i(t/n)’T. eitn) S yn = -tk ' 1)

n—e
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which is known as “Trotter’s formula”. Under certain conditions on S Katol4], using
Chernoff’s lemma, has proved the existence of this formula in the special case of T =
— A and S is a complex-valued measurable function. A generalization of Kato’s
theorem has been given by Barry Simon. These results can be applied to great variety
of operators. Trotter’s formula has also been verified by Katol®l when T and S are
nonnegative self-adjoint operators in a Hilbert space.

Lapidus(¥l has shown that if the unitary groups generated by T and S are replaced
by their associated imaginary resolvents, the corresponding product formula holds
for a pair of nonnegative self-adjoint operators T and S, i.e.:

lim ([I +i(tn)T] [I + i(t/n)S]! )» = e-itk @)

where K denotes the form sum of T and S.

By a somewhat different method Lapidusl¥l obtained the product formula (2) for
self-adjoint operators T and S, where T is nonnegative and it is essential that S has an
unbounded negative part.

It is noteworthy that Katol(23! was interested in the behaviour of semigroups and
not that of the resolvents. Furthermore Lapidus was interested in the behaviour of
the resolvents of S, T and K = T +'S. The functions (z— A)~!' and exp (-tA) are re-
lated and many properties of one can be translated into appropriate properties for
the other. However, for Schrodinger operators the study of semigroup precedes the
study of the resolvent. Here we shall adopt and use the “Feynman integral” to search
for the solution of the Schrodinger equation. As a matter of fact the resolvents ker-
nels of (—A) and of elliptic differential operators and some other related functions
have been studied in Gurarie and Gurarie and Konl>l,

In this paper we explore possible extensions of Lapidus’s results to elliptic diffe-
rential operators (generalized Schrodinger operators).

First we recall some notations and definitions as follows: The space L (R™) is de-
fined to be the set of measurable functions f such that |If|, = (J [P W)? <w,1<p<
o where u will be the Lebesgue measure and R™ is’ m-dimensional real space.
L, 1oc(R™) is the set of functions which lie in L,(W) for each compact W C R™.
CZ(R™) denotes, the space of infinitely many times differential functions with com-
pact support. W, (R™) denotes the set of functions f such that for O < | k| < rall the
weak derivatives Dkf exist and are in L (R™), and equip W, . (R™) with a scalar pro-
duct and norm as follows:

<f,g> = X [ DD dx, |ift = 3 [IDM?dx.
lkl=<r Ik|<r
W, (R™) is called a Sobolev space of order r. D(T) denotes the domain of the
operator T. A multi-index k is an n-tuple (k,, k, ,..., k) of non-negative integers.
Wewrite K=k, + ... + k . Forxe R",
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k
x* = x¥  xkm and D = Dyt D,m, where D; = 2
L) &
i

The operator T, = |k|2 a, D¥ is known as the principle part of T = Iklz a,D*.
=r <r
A real-valued measurable function q on R™is to lie in Q,, if and only if

i) lim (sup, [ I|x-yP™lq(y)ld™y) =o,ifm=3

a—0 |x-yl<a
i) Lim (sup, [ In(x-y[?) lq()ld%) =o,ifm =2
a—0 [x-yj<a
iii) sup, [ [q(y)l dy <= ,ifm=1.
[x-yl=1

The operator B is said to be A-bounded if D(A) C D(B) and there exist b = o0 and
a = o such that |Bf]| = allf]| + b||Af]| (*), for all f e D(A). The infimum of all b = o for
which an a = o exist such that (*) holds is called the A-bound of B. :

I. Schridinger Operator (-A + q)
In this section we study the following example:

Let T = — A be the negative Laplacian operator in L,(R™), m = 3 and let S be the
multiplication operator on L,(R™) with a real-valued function q with the following
condition [q] :

Y q,: = max (q,0) ; q, €Ly (R™)

q: = max (—q,0) , q Q.

To prove that (2) holds for this example we use theorem 1in Lapidus!”l. This theorem
is applicable if we show that the operator T + S is essentially self-adjoint on D(T)N
D(S) with T = — A, S is a multiplication operator by q. In this case there exists a un-
ique self-adjoint extension of T + S which coincides with the formsumT + S, i.e. the
form sum T + S is the realization of the Schrédinger operator T + 8. To prove the
existence of a unique self-adjoint extension — A + q we show that — A + q is essen-
tially self-adjoint. For that we prove that q_is form- (— A)- bounded with (—.A) form-
bound < 1, D (— A) C D(q_), (see, Lapidus(™).

For that we have to show that:

I g 1R = (D] < a ((E,-4) + 22 |iD) = a (I(—a+ )2 ) ,

for arbitrary small a > o if 22 is chosen appropriately. Thus it suffices to show that
|W,)|— 0 asz— =, where :

W, = |q |2 (- A +z3)12 (see Hempell®l).
Since [W| = [[W,W;|[12, it suffices to show that AN
It is clear that W,W; D |q |2 (— A + z2)™ |q|"?, where (- A + z2)! is an integral

—>0,a8Z— .
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operator with the kernel G(r,z)

and
c(m) r2—m
IG (r,2)|<

m-1 m-3

ccn)r__f_ld_i_

Now, for u € D (|q_|"2) let us define
&8(y) = J G(1,2) lg_(x)|" u(x) dx.
Then we have
W, W ul =lla 1> gl = flo_ e dy = §S |G (r,2) [la.(x)] [u@)Plq.(y) | dx dy <
sup [ G(r.2)| la.(®)| dx [f 1q_(¥)| |G(r,2)] [u(x)[? dx dy

yeR
=c, [J lq_(y)| |G(r,2)| ju(x)]? dx dy, where
¢ = sup J1G(r,2)| lq.(x)| dx.

yeR
Letc,=1,+1, , then
L=sp [ 6@l de

yeR™  jryl<iz”
and
I, = sup i) . IG(r,2)| lq (x)] dx

yeR™  peyl>le”
By using the estimation of the function G(r,z) we get
I - 1G(x -yl ,2)| lq_(x)| dx <

be-yi<

c(m) [ |x-yPm|qx)| dx

heyi<la ™
The condition [q] implies that q_e Q_, m = 3, i.e.

S k-yPmja®)| dx - o, as z—w
[x-yl<z .

Hencel, — o0, as z —» .
Also by using the estimation of the function G(r,z) and the condition [q] we can
show that I, — o, as z— ». Therefore ¢,— 0, as z—» o, This implies that:

W, W] —o0,asz— o, i.e. [W]| - 0, a5 z— oo,
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Hence q_is — A —form bounded with relative bound < 1. This proves that the
operator — A + q s essentially self-adjoint. Thus there exists a self-adjoint extension
of — A + q which we denote by K.

Hence by the theorem (1) mentioned by Lapidusm,
im ([T +i(t/n) (—A)]* [I+i(t/n)gl!)" f=eiXf,

for all f ¢ H, uniformly in t on bounded subsets of R.

In order to find the unique solution of the Schrodinger equation

; %_ltl = Ku , with u(x,0) = v(x) , veD(K) and K = —A+q 3)

we apply theorem (2) by Lapidus!”! and the estimations of the kernels of the resol-
vents of — A. ' ’

The unique solution of (3) is given by:
u(x,t) = (eKv) (x) , teR,xeR™. ) _
Since q, € L; ,(R™) and q_ is — A — form bounded with relative bound < 1, the
modified Feynman integral converges and theorem (2) mentioned by Lapidusf’]

holds. Therefore the solution of (3) is represented by a modified Feynman path in-
tegral as follows: ‘

For all v e L,(R™) and almost every x e R™

(e—itK V) (x) = lim f f F“(x0 yeees Xn,t) (4)
n—sx R™ R™

x m (1+i(tn) q(x) ) v(x,) dx; dx, ,
i=1 '
where we have setx, =xand F, (X, »---> Xppt) is the nthiterated kernel of the convolu-
tion operator [I —i(t/n) A]

F (x, Xx,t)= ;lr G(xy> X5 t/n) )
j=1
_ The convergence in (4) holds in L,(R™) and is uniform inton bounded subset of R.
The function G(xj_1 s X5 t/n), m # 3 turns out to be anexpression in terms of the Bes-
sel’s functions of 3rd order and it is given by:

,t/n) = (/4 [mf - ym2-1 H‘AJ); 1 (—\" , X _q . t/n) (6)

(}(x} s X;

where Hg‘l}z a &Lxl t/n) is the Bessel’s function of 3rd order.
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Therefore from (5) and (6),
= o (/4 —L  y» o t
F(xo, ,X,,t) j:rl (i/4 Zﬂnlx,-—x,--ll) Hm x,%_;, n)
2
|_m
it ym2-1n 2 2 1) t
= Q™ m Kol HD G
-1
2
™.
Substitute (7) in (4); we get
~itK = I it (270 (1 -mn)
@) ) = lim [ [ (G 3 -
x HWD
;_

(X, » X1 t/n) (1 +i(t/n) Q(x,') )! v(x,) dx,

dx_.
Let us consider a continuous path w connecting x, to x_ in time t such that
w(0) = x,, w(t) = x, and the x; lie in w. Hence

m

m (1 +i(t/n)q(x))"isan
i=1
approximation for exp (-i [* q(w(s)) ds)

This implies that
m
i l t (5 - 1)n n "
€ v) )= [ .. f () 7 [x—x_,|0-™
R™ gm 8an =1 Y
: ot
X Hg>_1 (%, %_y,tm)v(x,)) e*§ D®ax gy (8)
2
Remark: We note that the radial function H{" (z) can be taken to be
[ I
H{ (2) =

,ifo <|zZl<1,d>o0

|22 Lif - g >1
Hence the Schrédinger equation can be solved under the weakest condition [q] on

q. The unique solution is given by (8). Also under the condition [q] the product for-
mula (2) holds and hence the result.

. Elliptic Differential Operator

In this section we consider elliptic operator T = A + B on R™ under the following
conditions [a,} and [b,] :
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[a) : T whose leading part A, where A = kg a,(x)D* is uniformly elliptic

differential operator, i.e. the leading symbol a(x,y) = X a, (x)y* satisfies the
condition, ¢, |y|" < a(x,y) < c, |y|" uniformly in x e R™. We assume that the coefficients
a (x) are sufficiently smooth and bounded with sufficient number of their deriva-
tives.

Now the conditions on B are:

[b,] : The operator B = 3 b, (x)D* (order B < order A), have coefficients b, €

n

L (®™). We introduce for each term b, Dk, its “fractional order”, s = 1 +
k

k|<r. (this condition is needed to have B bounded relative to A). For higher-order
coefficients b, we assume that 2 [[b]| < 1. Finally letb e L, + L,
k

Iy , loc

To prove the existence of the product formula for the operators A and B under the
above conditions [a,] and [b,] we show that there exists a self-adjoint extension K of
A + B as follows:

each term of the operator B(z - A)™ = 3 bD*(z - A)™ is composed of two
k

operators T, and T,, where T is a multiplication operator with b, and T, is a convulu-
tion with kernel E(x) = F1 (z5(z — a(z))™). Gurarie! and Gurarie and Konl!fl have
proved the following estimation: :

Bz - Ayl =< c(8) p~ D 9),
c(6) = 0l6] ™" (> >0) , z = pe®,
taking the following considerations:
1) The radial function H_, 4 is given by:
[l : 2l <1

J2 lel>1 ,
where — % < B < » and p. is the degree of smoothness of a(x,y) iny at 0.
2) For each term b, D* the “fractional order” condition is imposed.
3) The Leibnitz’s rule has been used in the sense that,
DXz -A)! f = . szjsk ‘:" k‘) ((z - ayH)k-i Dif
4) The iterated chain rule for derivatives of (z — a)! has been used,

Ce@-a)y' =3, G-a hala,

i1<l<lj|,j'+ +j =j, the summation being taken over all partitions of j into the
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sum of multiindeces j! ... j! and €1 4 being certain universal combinatorial coeffi-
. v j
cients.

As a corollary of this estimation (9) we conclude the following:
1) apriori estimates for the operators A and B is
|[Bf||p <e ||Aﬂ|p + A, ||ﬂ|p , 1<p<minl - (10)
forallfinD(A)inL, 0<e=c,3|bJ , A >o.
2) the fact that D(B) D D(A) implies that D(A + B) = D(A).

With a appropriate choice for ¢, and Z||b,J| < 1 (see the condition [b,]), a priori es-
timates (10) is used along with Kato-Rellich theorem to prove the essential self-ad-
jointness of the operator A + B on D(A), if A + B is formally symmetric.

Hence the operator A + B has a unique self-adjoint extension K which coincides
with the realization of A + B.

Consequently and by use of theorem 1 due to Lapidus!” we conclude that
lim ([I +i(t/n)A}* [I+i(t/n)B]™ )" = etk |

uniformly in t on bounded subsets of R.

As for the solution of the Schrodinger equation (3) with K = A + B we use the
theorem (2) in Lapidus(’] and the estimations of the radial bounds for the resolvents
of the operator A (seel>)),

The unique solution of the Schréndinger equation is given by:
u(x,t) = (e*kv) (x), teR,xeR™.
By the theorem (2) in Lapidus!”] we can express this solution as follows:

(e*v) x) = lim [ ... f F (Xg:X; 5.5 X,0t)
Rm

n—oo Rm
X m (1+i(th) Bx))" v(x)dx, dx, ,
j=1

for all v e H and almost every x e R™, where x = x_and F,(x,, ,X, ; t)is the nth it-
erated kernel of the convolution operator [I-i(t/n)A]-,

F(x,,....,x,;t) = [ G(x;_;, x;; t/n) . (12)
=t

The convergence in (12) holds in L,(R™) = H and is uniform in t on bounded sub-
sets of R.

The estimations of the function G(x;_; , x5 (t/n)) due to Gurariesl and Gurarie
and Konl®! are given by:
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, (21" |xj - x,'l)_m+r > |Xj-1 - le =1
G,y » %5 2)| < Clgm- )
erim'Vz |x._1—xj| ; 'xj—l—xj|<1

where we set z2 = n/it, Imz > o.

Given a continuous path w connecting x, to x,, in time t such that w(o) = x_ , w(t)
= X, and the x; lie in w. Hence

(1 + i(t/n) B(x;))! is an approximation for ¢t § B

i=1
Since all paths are continuous for each x,

v(x(1)) m (1 + i(t/n) B(x))"! — v(w(t)) i £ Bovisn as
j=1
Substitute (13) in (12) we get

v bt .
. < n m/r — (lzl ‘ lx' -1~ xll)_m f s IX. -1~ le <
F(xo, Xx,5t)< m Clg )

j=

—

-1 Imrvz )
ertmVe I -x|5 o -x|>1,
where z2 = nfit,Imz > o.

From (14) and (15) in (11) we obtain the solution of the Schrodinger equation (3)
under the conditions [a,] and [b,] on the coefficients of the operators A and B and
hence the result. )
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