On a Condition for a Graph to be a Tree

RASHEED M.S. MAHMOOD Department of Mathematics, Bahrain University, Isa Town, State of Bahrain

ABSTRACT. In this paper we show that if a group G acts on the graph X under certain generators and relations of G, then X is a tree.

1. Introduction

The presentation of groups acting on trees known as Bass-Serre theorem has been given in^[1], corollary 5.2.</sup>

The aim of this paper is to prove the converse of Bass-Serre theorem in the sense that if G is a group acting on a graph X and G has the presentation of corollary 5.2 of^[1], then X is a tree.

We begin by giving some definitions. By a graph X we understand a pair of disjoint sets V(X) and E(X), with V(X) non-empty, together with a mapping $E(X) \rightarrow V(X) \times V(X)$, $y \rightarrow (o(y), t(y))$, and a mapping $E(X) \rightarrow E(X)$, $y \rightarrow \overline{y}$ satisfying $\overline{y} = y$ and $o(\overline{y}) = t(y)$, for all $y \in E(X)$. The case $\overline{y} = y$ is possible for some $y \in E(X)$.

A path in a graph X is defined to be either a single vertex $v \in V(X)$ (a trivial path), or a finite sequence of edges y_1, y_2, \dots, y_n , $n \ge 1$ such that $t(y_i) = o(y_{i+1})$ for $i = 1, 2, \dots, n-1$.

A path y_1, y_2, \dots, y_n is reduced if $y_{i+1} \neq \overline{y}_i$, for $i = 1, 2, \dots, n-1$, A graph X is connected, if for every pair of vertices u and v of V(X) there is a path y_1, y_2, \dots, y_n in X such that $o(y_1) = u$ and $t(y_n) = v$.

A graph X is called a tree if for every pair of vertices of V(X) there is a unique reduced path in X joining them. A subgraph Y of a graph X consists of sets $V(Y) \subseteq V(X)$ and $E(Y) \subseteq E(X)$ such that if $y \in E(Y)$, then $\overline{y} \in E(Y)$, o(y) and t(y)

are in V(Y). We write $Y \subseteq X$. We take any vertex to be a subtree without edges. A maximal connected subgraph is called a component. It is clear that a graph is connected if and only if it has only one component.

If X_1 and X_2 are two graphs then the map $f: X_1 \to X_2$ is called a morphism if f takes vertices to vertices and edges to edges such that

$$f(y) = f(y)$$

$$f(o(y)) = o(f(y))$$

$$f(t(y)) = t(f(y)), \quad \text{for all } y \in E(X_1);$$

and

f is called an isomorphism if it is one-to-one and onto, and is called an automorphism if it is an isomorphism and $X_1 = X_2$. The automorphisms of X form a group under composition of maps, denoted by Aux (X).

We say that a group G acts on a graph X if there is a group homomorphism $\phi: G \rightarrow$ Aut (X). If $x \in X$ is a vertex or an edge, we write g(x) for $\phi(g)(x)$. If $y \in E(X)$, then $g(\overline{y}) = \overline{g(y)}, g(o(y)) = o(g(y))$, and g(t(y)) = t(g(y)). The case $g(y) = \overline{y}$ for some $y \in E(X)$ and $g \in G$ may occur. If $y \in X$, (vertex or edge), we define $G(y) = \{g(y) | g \in G\}$ and this set is called an orbit. If $x, y \in X$, (vertices or edges) we define $G(x, y) = \{g \in G | g(y) = x\}$, and $G_x = G(x, x)$, called the stabilizer of x. For $y \in E(X)$, it is clear that G_y is a subgroup of G_u , where $u \in \{o(y), t(y)\}$. Also if Y is a subset of X then we define G(Y) to be the set $G(Y) = \{g(y) | g \in G, y \in Y\}$.

It is clear that if $x \in V(X)$ and $y \in E(X)$, then $G(x, y) = \phi$.

For more details about groups acting on graphs we refer the reader to [1, 2 or 3].

2. Preliminary Definitions and Notation

Throughout this paper G will be a group acting on the graph X, T a subtree of X such that T contains exactly one vertex from each G-vertex orbit, and Y a subtree of X such that Y contains T, and each edge of Y has at least one end in T, and Y contains exactly one edge y(say) from each G-edge orbit such that $G(\bar{y}, y) = \varphi$, and exactly one pair y and \bar{y} from each G-edge orbit such that $G(\bar{y}, y) \neq \varphi$.

Properties of T and Y

- (1) G(Y) = X.
- (2) G(V(T)) = V(X).
- (3) If $u, v \in V(T)$ such that $G(u, v) \neq \varphi$, then u = v.
- (4) $G(\overline{y}, y) = \varphi$, for all $y \in E(T)$.
- (5) If $y_1, y_2, \epsilon E(Y)$ such that $G(y_1, y_2) \neq \varphi$, then $y_1 = y_2$ or $y_1 = \overline{y}_2$

Given this we can now introduce the following notation.

(1) For each $v \in V(X)$ let v^* be the unique vertex of T such $G(v, v^*) \neq \phi$. In particular $v^* = v$ if $v \in V(T)$ and in general $(v^*)^* = v^*$. Also if $G(u, v) \neq \phi$, then $v^* = v^*$ for $u, v \in V(X)$. If $v \in V(T)$, let $\langle G_v | \text{rel } G_v \rangle$ stand for any presentation of G_v , and \tilde{G}_v be the set of generating symbols of this presentation.

(2) For each edge y of E(Y) we have the following

(a) Define [y] to be an element of $G(t(y), t(y)^*)$, that is, $[y](t(y)^*) = t(y)$, to be chosen as follows.

If $o(y) \in V(T)$ then (i) [y] = 1 if $y \in E(T)$, $(ii) [y] (y) = \overline{y}$ if $G(\overline{y}, y) \neq \phi$.

If $o(y) \notin V(T)$ then $[y] = [\overline{y}]^{-1}$ if $G(\overline{y}, y) = \varphi$, otherwise $[\overline{y}] = [\overline{y}]$.

If is clear that $[y][\overline{y}] = 1$ if $G(\overline{y}, y) = \varphi$, otherwise $[y][\overline{y}] = [y]^2$.

(b) Let $-y = [y]^{-1}(y)$ if $o(y) \in V(T)$, otherwise let -y = y. Now define +y = [y](-y).

It is clear that $t(-y) = t(y)^*$, $o(+y) = o(y)^*$ and $(+y) = -(\overline{y})$.

(c) Let S_y be a word in $G_{o(y)^*}$ of value $[y][\overline{y}]$. It is clear that $S_{\overline{y}} = S_y$.

(d) Let E_y be a set of generators of G_{-y} and \widetilde{G}_y be a set of words in $G_{t(y)}$, mapping onto E_y .

(e) Define $\phi_y : G_{-y} \to G_{+y}$ by $\phi_y(g) = [y]g[y]^{-1}$, $g \in G_{-y}$ and define $\psi_y : \widetilde{G}_y \to \widetilde{G}_y$ by taking the word which represents the element g of E_y to the word which represents the element $[y]g[y]^{-1}$.

(f) Let $yG_y y^{-1} = G_{\overline{y}}$ stand for the set of relations $ywy^{-1} = \psi_y (w)$, $w \in \widetilde{G}_y$.

- (3) Let P(Y) stand for the set of generating symbols
- (i) \widetilde{G}_{v} , for $v \in V(T)$
- (ii) y, for $y \in E(Y)$

and R(Y) stand for the set of relations

- (i) rel G_{ν} , for $\nu \in V(T)$
- (ii) $yG_yy^{-1} = G_{\overline{y}}$, for $y \in E(Y)$
- (iii) y = 1, for $y \in E(T)$
- (iv) $y \overline{y} = S_y$, for $y \in E(Y)$
- (v) $y^2 = S_y$, for $y \in E(Y)$ such that $G(\overline{y}, y) \neq \phi$.

Note that if $G(\overline{y}, y) \neq \phi$ then $y \notin E(T)$.

(4) Let $\delta(Y)$ be the set $\{G_v, [y] : v \in V(T) \text{ and } y \in E(Y)\}$.

2.1 Theorem (Bass-Serre Theorem)

(i) If X is connected, then $\delta(Y)$ generates G.

(ii) If X is a tree, then G has the presentation $\langle P(Y) | R(Y) \rangle$ via $\widetilde{G}_{v} \rightarrow G_{v}$ and $y \rightarrow [y]$, for all $v \in V(T)$ and all $y \in E(Y)$.

Proof

See^[3], Corollary 5.2.

3. The Converse of Bass-Serre Theorem

Let G, X, Y and T be as in section two. In this section we prove the converse of Theorem 2.1 in the sense that if $\delta(Y)$ generates G, then X is connected, and if G has the presentation of Theorem 2.1 - (ii), then X is a tree.

3.1 Definition

For each $v \in V(Y)$ let X_v be an edge of E(Y) such that $o(X_v) \in V(T)$ and $t(X_v) = v$. Let $e_v = 0$ if $v \in V(T)$, otherwise $e_v = 1$.

Concerning the edge X_v we see that X_v exists since Y is a subtree and X_v is unique if $v \notin V(T)$ and not necessarily unique if $v \in V(T)$.

The following proposition will be fundamental for the main theorem.

3.2 Proposition

Any element g of G(u, v), where $u, v \in V(Y)$ can be written as $g = X_u \int_{-\infty}^{u} g_0 [\bar{X}_v]^{e_v}$ where $g_o \in G_{u^*}$.

Proof

Since $g \in G(u, v)$, therefore g(v) = u.

We consider the following cases :

Case 1. u and v are in V(T).

In this case we have $u^* = v^* = v$ so that $G(u, v) = G_v$ and X_u and \overline{X}_u are in E(T). Since $[X_u] = [\overline{X}_u] = 1$ and $e_u = e_v = 0$, therefore the proposition holds.

Case 2. $u \in V(T)$ and $v \notin V(T)$.

In this case $u^* = v^* = u$, $[X_u] = 1$, $e_u = 0$, and $e_v = 1$.

Now $g \in G(u, v) \Longrightarrow g(v) u$

 $\Rightarrow g[X_{v}](v^{*}) = v^{*}, \text{ since } [X_{v}](v^{*}) = v, \text{ and } v^{*} = u$ $\Rightarrow g[X_{v}] \in G_{v^{*}}$ $\Rightarrow g[X_{v}] = h, h \in G_{v^{*}}$ $\Rightarrow g = h[X_{v}]^{-1}$ $\Rightarrow g = [X_{u}]^{e_{u}} h[X_{v}]^{-1}$ If $G(\overline{X}_{v}, X) = \phi$, then $[X_{v}]^{-1} = [\overline{X}_{v}]$ We take $h = g_{a}$ If $G(\bar{X}_{v}, X_{v}) \neq \phi$, then $[\bar{X}_{v}] = [X_{v}]$ and $[X_{v}]^{2} \epsilon G_{x_{v}}$. Hence $[X_{v}]^{-1} = k[X_{v}]$, where $k \epsilon G_{x_{v}}$. We take $g_{o} = hk$. Case 3. $u \notin V(T)$ and $v \epsilon V(T)$. In this case $u^{*} = v^{*} = v$, $e_{u} = 1$, $e_{v} = 0$ and $[X_{v}] = 1$. Now $g \epsilon G(u, v) \Rightarrow g(v) = u$ $\Rightarrow g(v) = [X_{u}](u^{*})$ $\Rightarrow g(v) = [X_{u}](v)$, since $u^{*} = v$ $\Rightarrow [X_{u}]^{-1}g(v) = v$ $\Rightarrow [X_{u}]^{-1}g \epsilon G_{v}$ $\Rightarrow [X_{u}]^{-1}g = g_{o}$, for $g_{o} \epsilon G_{v}$ $\Rightarrow g = [X_{u}]^{e_{u}}g_{o}[\bar{X}_{v}]^{e_{v}}$, since $e_{u} = 1$, and $[X_{v}] = 1$,

Case 4. u and v are not in V(T).

This case is similar to cases 2 and 3 above.

This completes the proof.

Since Y is a subtree of X, therefore any edge y of E(Y), $o(y) \in V(T)$ can be written as $y = X_v$, where $v \in V(Y)$. Therefore by defining $e_y = e_v - 1$, where v = o(y), for all $y \in E(Y)$, the following can be easily proved :

- (1) $e_y + e_u = 0$ if $y \notin E(T)$, where u = t(y)(2) $[y]^{e_u + e_v} = [y]$, where u = t(y) and v = o(y)(3) $[y]^{e_y + e_u} = [y]$, where u = t(y)(4) $[X_u]^{e_u} = [y]^{e_u}$, where u = t(y)
- (5) $[\bar{X}_{v}]^{e_{v}} = [y]^{e_{v}}$, where v = o(y)

3.3 Proposition

Let y_1 and y_2 be two edges of E(Y), $u_i = t(y_i)$ and $v_i = o(y_i)$ for i = 1, 2 such that $G(u_1, v_2) \neq \phi$. Then any element $g \in G(u_1, v_2)$ can be written as

$$g = [y_1]^{e_{u_1}} g_o[y_2]^{e_{v_2}}$$
, where $g_o \in G_{u_1^*}$.

Proof

The proof easily follows from proposition 3.2 and (5) above.

3.4 Lemma

If G is generated by the set $\delta(Y)$, then X is connected.

Proof

Let C be a component of X such that C contains Y. We need to show that X = C.

Since $Y \subseteq C$, we have $G(Y) \subseteq G(C)$. By the definition of Y we have G(Y) = X. Therefore G(C) = X. To show that C = X we need to show that $G_C = G$, where $G_C = \{g \in G \mid g(C) = C\}$ which is a subgroup of G. Define $\Delta(Y) = \{g \in G \mid Y \cap g(Y) \neq \phi\}$. Similarly $\Delta(C)$ is defined. Therefore $\Delta(Y) \subseteq \Delta(C)$.

Now we show that $\Delta(Y)$ generates G, *i.e.* $<\Delta(Y) > = G$. Since $\delta(Y)$ generates G, therefore we need to show that the elements of $\Delta(Y)$ can be written as a product of the elements of $\delta(Y)$.

Now
$$g \in \Delta(Y) \implies Y \cap g(Y) \neq \phi$$

 \implies there exists $u, v \in V(Y)$ such that $u = g(v)$
 $\implies g \in G(u, v)$
 $\implies g = [X_u]^{e_u} g_o[\bar{X}_v]^{e_v}$, where $g_o \in G_{u^*}$. (Proposition 3.2)
 $\implies < \delta(Y) > = < \Delta(Y) > = G$
 $\implies < \Delta(C) > = G$

Since $< \Delta(C) > = G_C$, therefore $G_C = G$.

Therefore $G_C(C) = G(C)$, which implies that C = X. Hence X is connected.

This completes the proof.

To prove the main result of this paper we shall therefore assume the following condition on the elements of G.

Condition I

If $g_o[y_1]g_1[y_2]g_2 \cdots [y_n]g_n$, $n \ge 1$ is the identity element of G, where

(1)
$$y_i \in E(Y)$$
, for $1 \le i \le n$

(2)
$$t(y_i)^* = o(y_{i+1})^*$$
, for $1 \le i \le n-1$

(3) $g_o \in G_{o(y_1)^*}$

(4)
$$g_i \in G_{f(v)^*}$$
, for $1 \le i \le n$

then for some $i, 1 \le i \le n$

- (a) $y_{i+1} = \overline{y}_i$ and $g_i \in G_{-y_i}$
- (b) $y_{i+1} = y_i$ and $g_i \in G_{y_i}$ if $G(\overline{y}_i, y_i) \neq \phi$.

The main result of this paper is the following theorem.

3.5 Theorem

If $\delta(Y)$ generates G, and G satisfies condition I, then X is a tree.

Proof

By Lemma 3.4, X is connected.

To show that X contains no circuits, that is, no reduced closed paths, we first show

that X contains no loops. Suppose that x is a loop in X. Then o(x) = t(x). Since G(Y) = X, x = g(y) for $g \in G$ and $y \in E(Y)$ and so g(o(g)) = g(t(y)), hence o(y) = t(y) contradicting the assumption that Y is a subtree. Hence X contains no loops.

Let x_1, \dots, x_n , $n \ge 1$ be a close path in X. We need to show that this path is not a circuit, or equivalently, this path is not reduced. Now $o(x_1) = t(x_n)$ and $t(x_i) = o(x_{i+1})$ for $1 \le i \le n-1$. Since G(Y) = X, therefore, $x_i = g_i(y_i)$, for $g_i \in G$ and $y_i \in E(Y)$, $1 \le i \le n$. Let $u_i = t(y_i)$ and $v_i = o(y_i)$ for $1 \le i \le n$. From above we have $g_1(v_1) = g_n(u_n)$ and $g_i(u_i) = g_{i+1}(v_{i+1})$ for $1 \le i \le n-1$.

By proposition 3.3 we have $g_n^{-1} g_1 = [y_n]^{e_{u_n}} h_n [y_1]^{e_{v_1}}$ and $g_i^{-1} g_{i+1} = [y_i]^{e_{u_i}} h_i [y_{i+1}]^{e_{v_i+1}}$, where $h_i \in G_{u_i^*}$ for $1 \le i \le n-1$.

Now
$$1 = g_1^{-1} g_2 g_2^{-1} \cdots g_{n-1} g_n^{-1} g_n g_n^{-1} g_1$$

= $[y_1]^{\alpha_1} h_1 [y_2]^{\delta_2} [y_2]^{\alpha_2} h_2 \cdots [y_{n-1}]^{\alpha_{n-1}} h_{n-1} [y_n]^{\alpha_n} h_n [y_1]^{\delta_1}$
where $\alpha_i = e_{u_i}$ and $\delta_i = e_{v_i}$ for $1 \le i \le n$.

Conjugating the above equation by $[y_1]^{\delta_1}$ we get

$$= [y_1]^{\gamma_1} h_1 [y_2]^{\gamma_2} h_2 \cdots y_{n-1}]^{\gamma_{n-1}} h_{n-1} [y_n]^{\gamma_n} h_n, \text{ where } \gamma_i = \delta_i + \alpha_i, 1 \le i \le n.$$

= [y_1] h_1 [y_2] ... | y_{n-1}] h_{n-1} [y_n] h_n, \text{ since } [y_i]^{e_i} = [y_i], 1 \le i \le n.

n, where $e_i = e_{y_i}$.

From condition *I* we have

(1)
$$y_{i+1} = \overline{y}_i$$
, and $h_i \in G_{-y_i}$, $1 \le i \le n-1$
or
(2) $y_{i+1} = y_i$, and $h_i \in G_{y_i}$, $1 \le i \le n-1$, where $G(\overline{y}_i, y_i) \ne \phi$.
If (1) holds then we have $[\overline{y}_{i+1}] = [y_i]$. We consider the following cases
Case 1. $G(\overline{y}, y_i) = \phi$ Therefore we have

$$g_{i}^{-1} g_{i+1} = [y_{i}]^{\alpha_{i}} h_{i}[y_{i+1}]^{\alpha_{i}+1}$$

$$[y_{i}]^{\alpha_{i}} h_{i}[y_{i}]^{-\alpha_{i}}, \text{ since } \overline{y}_{i+1} = y_{i}$$

$$= [y_{i}]^{e_{i}+\alpha_{i}} k_{i}[y_{i}]^{-e_{j}-\alpha_{i}}, \text{ where } k_{i} \in G_{y_{i}} \text{ such that}$$

$$h_{i} = [y_{i}]^{e_{i}} k_{i}[y_{i}]^{-e_{i}}$$

$$k_{i}, \text{ since } [y]^{e_{y}+e_{i}(y)} = 1, \text{ for all } y \in E(Y).$$
This implies that $g_{i}^{-1} g_{i+1} \in G_{y_{i}}$. That is,

$$g_{i}^{-1} g_{i+1}(y_{i}) = y_{i}$$

$$\Rightarrow g_{i+1}(y_i) = g_i(y_i)$$

$$\Rightarrow g_{i+1}(\overline{y}_{i+1}) = g_i(y_i), \text{ since } y_{i+1} = \overline{y}_i$$

$$\Rightarrow g_{i+1}(y_{i+1}) = g_i(y_i)$$

 $\Rightarrow x_{i+1} = x_i$ \implies the path $x_1, x_2, \dots x_n$ is not reduced. Case 2. $G(\bar{y}_i, y_i) \neq \phi$. Then $[y_i]^2 \epsilon G_{y_i}$ and $\bar{y}_i = [y_i] = [y_{i+1}]$, since $y_{i+1} = \bar{y}_i$ Therefore $g_{i}^{-1} g_{i+1} = [y_{i}]^{\alpha_{i}} h_{i} [y_{i}]^{\alpha_{i}}, h_{i} \in G_{\nu_{i}}$. So $g_i^{-1} g_{i+1}(y_i) = [y_i]^{\alpha_i} h_i [y_i]^{\alpha_i} (y_i)$ $= [y_i]^{\alpha_i + e_i} k_i [y_i]^{\alpha_i - e_i} (y_i),$ where $k_i \in G_{y_i}$ such that $h_i = [y_i]^{e_i} k_i [y_i]$ $\begin{cases} k_i(y_i) & \text{if } t(y_i) \in V(T) \\ k_i[y_i]^2(y_i) & \text{if } t(y_i) \notin V(T). \end{cases}$ Since k_i and $[y_i]^2$ are in G_{y_i} , therefore $k_i(y_i) = k_i[y_i]^2(y_i) = y_i$ Thus $g_i^{-1} g_{i+1}(y_i) = y_i$ $\Rightarrow g_{i+1}(y_i) = g_i(y_i)$ \implies $g_{i+1}(\overline{y}_{i+1}) = g_i(y_i)$, since $y_{i+1} = \overline{y}_i$ \Rightarrow $g_{i+1}(y_{i+1}) = g_i(y_i)$ $\implies \overline{x}_{i+1} = x_i$ \implies the path x_1, x_2, \cdots, x_n is not reduced. Finally if (2) holds then we have $y_{i+1} = y_i$ and hence $[y_{i+1}] = [y_i]$ $\begin{bmatrix} y_i \end{bmatrix}^{\alpha_i} h_i \begin{bmatrix} y_i \end{bmatrix}^{\delta_i} (y_i)$ Now $g_{i}^{-1} g_{i+1}(y_{i})$ $y_i \Big|_{\alpha}^{\alpha + e_i} k_i [y_i]_{\alpha}^{\delta_i - e_i} (y_i)$, where $k_i \in G_{\nu_i}$ such that $h_i = \left[y_i \right]^{e_i} k_i \left[\dots \right]$ $k_i [y_i]^{\delta_i - e_i} (y_i)$, since $\alpha_i + e_i = 0$ k_iy_i, since δ_i = $k_i(\overline{y}_i)$, since $[y (y) = \overline{y}$ for all $y \in E(Y)$ such that $G(\overline{y}, y) \neq \phi$ $= \overline{y}_i, \text{ since } k_i \in G_{y_i} \text{ and } G_{\overline{y}} = G_y \text{ for all } y \in E(Y)$ Hence $g_i^{-1} g_{i+1}(y_i) = \overline{y}_i$ \implies $g_{i+1}(y_i) = g_i(\overline{y}_i)$ \Rightarrow $g_{i+1}(y_{i+1}) = g_i(y_i)$, since $y_{i+1} = y_i$ $\Rightarrow x_{i+1} = \overline{x}_i$ \implies the path x_1, x_2, \cdots, x_n is not reduced.

This completes the proof of the main theorem.

We remark that if X is a tree then G satisfies condition I of Theorem 3.5, $\binom{[4]}{2}$, Corollary 1). In fact Corollary 1 of $\binom{[2]}{2}$ has been proved in case $\delta(Y)$ generates G and G has the presentation $\langle P(Y) | R(Y)$ without using the assumption that X is a tree. This leads us to the following corollary of Theorem 3.5.

3.6 Corollary (The Converse of Bass-Serre Theorem)

If $\delta(Y)$ generates G, and G has the presentation $\langle P(Y) | R(Y) \rangle$ via the map $\widetilde{G}_{v} \rightarrow G_{v}$ and $y \rightarrow [y]$ for all $v \in V(T)$ and all $y \in E(Y)$, then X is a tree.

4. Applications

In this section we give examples of groups acting on graphs and satisfying condition I of the main theorem. Free groups, free products of groups, free products of groups with amalgamation and HNN groups are examples of groups acting on trees in which condition I is the reduced form of the elements of these groups. For more details about the above groups we refer the reader to^[4].

4.1 Free Groups

Let G be a group of base A.

Define the graph X as follows

$$V(X) = G$$

$$E(X) = Gx(A \cup A^{-1})$$

For
$$(g, a) \in E(X)$$
 we define

$$\overline{(g, a)} = (ga, a^{-1})$$

t(g, a) = ga

and o(g, a) = g

G acts on X as follows :

$$g(g') = gg'$$
, for all $g, g' \in G$

g(g', a) = (gg', a) for all $g, g' \in G$ and all $a \in A \cup A^{-1}$.

It is clear that the stabilizer of each $g' \in G$ is trivial. We take $T = \{1\}$ and Y as $V(Y) = \{1\} \cup \{a \mid a \in A\}$, and $E(Y) = \{(1, a) \mid a \in A\} \cup \{(a, a^{-1}) \mid a \in A\}$. It is clear that Y is a subtree of X, $T \subseteq Y$ and G(Y) = X. Now we need to show that X is a tree. If u is a vertex of Y then $u^* = 1$ and if $a \in A$ then the edge y = (1, a) is in Y, and, o(y) = 1, t(y) = a and [y] = a. Therefore the set of $\delta(Y)$ of Lemma 3.4 is just the set $A \cup A^{-1}$ and the condition I is the reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

4.2 Free Products of Groups

Let $G = *_{i \in I} G_i$, G_i non-trivial, |I| > 1, be a free product of the groups G_i

Define the graph X as follows :

$$V(X) = G \cup \{gG_i | g \in G, i \in I\}$$

$$E(X) = (GxI) \cup (IxG)$$

For $g \in G$ and $i \in I$ we define

$$\overline{(g, i)} = (i, g), (i, g) = \overline{(g, i)}$$
$$t(g, i) = gG_i, t(i, g) = g$$

and $o(g, i) = g, o(i, g) = gG_i$

We define the action of G on X by

$$g(g') = gg', \text{ for all } g, g' \in G$$

$$g(g' G_i) = gg' G_i, \text{ for all } g, g' \in G \text{ and all } i \in I$$

$$g(g', i) = (gg', i), \text{ for all } g, g' \in G \text{ and all } i \in I$$

$$g(i, g') = (i, gg'), \text{ for all } g, g' \in G \text{ and all } i \in I$$

Let T be defined as follows :

 $V(T) = \{1\} \cup \{G_i | i \in I\}$ and $E(T) = \{(1, i) | i \in I\} \cup \{i, 1\} | i \in I\}$

It is clear that T is a subtree of X, Y = T and G(Y) = X. Therefore if v is a vertex of Y and y is an edge of Y then $v^* = v$ and [y] = 1. Also it is clear that the stabilizer of each edge is trivial, and the stabilizer of each vertex gG_i of X is the group G_i . Therefore the set $\delta(Y)$ of Lemma 3.4 is just the set $\bigcup i \in G_i$ and the condition I is the reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

4.3 Free Products of Groups with Amalgamation

Let $G = {}^{*}_{A} G_{i}$, $i \in I$, |I| > 1, A non-trivial, be a free product of the groups G_{i} with amalgamated subgroup A.

Define the graph X as follows :

$$V(X) = \{gA | g \in G\} \cup \{gG_i | g \in G_i\},$$

$$E(X) = \{ (gA, i) | g \in G\} \cup \{i, gA \} | g \in G\} \text{ such that}$$

$$\overline{(gA, i)} = (i, gA), (i, gA) = (gA, i)$$

$$o(gA, i) = gA, o(i, gA) = gG_i, \text{ and}$$

$$t(gA, i) = gG_i, t(i, gA) = gA.$$

We define the action of G on X by

$$g(g' A) = gg' A, g(g' G_i) = gg' G_i$$

$$g(g' A, i) = (gg' A, i) \text{ and } g(i, g' A) = (i gg' A)$$

for all $g, g' \in G$ and $i \in I$.

Let T be defined as follows :

 $V(T) = \{A, G_i | i \in I\}$ and $E(T) = \{(A, i), (i, A) | i \in I\}$ and Y = T.

It is clear that T is a subtree of X and G(Y) = X. If y is the edge (A, i) or (i, A), then [Y] = 1.

It is clear that the stabilizer of the edge (A, i) is the group A and the stabilizer of the vertices A and G_i are the groups A and G_i respectively. Therefore the set $\delta(Y)$ of Lemma 3.4 is just the set $\bigcup_{i \in I} G_i$ and the condition I is the reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

4.4 HNN Groups

Let $G = \langle H, t_i | \text{re} | H, t_i A t_i^{-1} = B_i \rangle$, $i \in I$ be HNN group of base H and associated subgroups A_i and B_i of H.

Define the graph X as follows :

$$V(X) = \{gH | g \in G\}$$

$$E(X) = \{(gB_i, t_i) | g \in G\} \cup \{gA_i, t_i^{-1} | g \in G\} \text{ such that}$$

$$(gB_i, t_i) = (gt_i A_i, t_i^{-1}), (gA_i, t_i^{-1}) = (gt_i^{-1} B_i, t_i)$$

$$t(gB_i, t_i) = gt_i H, t(gA_i, t_i^{-1}) = gt_i^{-1} H$$

and $o(gB_i, t_i) = gH$, $o(gA_i, t_i^{-1}) = gH$.

Let T and Y be defined as follows :

 $T = \{H\}, V(V) = \{H\} \cup \{t_i H \mid i \in I\}, \text{ and } E(Y) = \{(B_i, t_i) \mid i \in I\} \cup \{(t_i A_i, t_i^{-1}) \mid i \in I\}.$

We define the action of G on X as follows :

g(g' H) = gg' H, $g(g' B_i, t_i) = (gg' B_i, t_i)$ and $g(g' A_i, t_i^{-1}) = (gg' A_i, t_i^{-1})$, for all $g, g' \in G$.

It is clear that the stabilizer of the vertex gH is the group H, and the stabilizer of the edges (gB_i, t_i) and (gA_i, t_i^{-1}) are the groups B_i and A_i respectively.

Also Y is a subtree of X and G(Y) = X. If y is the edge (B_i, t_i) then o(y) = H, $t(y) = t_i H$, and $[y] = t_i$. Therefore the set $\delta(Y)$ of Lemma 3.4 is $H \cup \{t_i | i \in I\}$, and the condition I is the reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

References

- Mahmud, R.M.S., Presentation of groups acting on trees with inversions, Proceedings of the Royal Society of Edinburgh 133A (1989), pp. 235-241.
- [2] Khanfar, M.I. and Mahmud, R.M.S., A note on groups acting on connected graphs, J. Univ. Kuwait (Sci) 16: 205-207 (1989).

- [3] Mahmud, R.M.S., The normal form theorem of groups acting on trees with inversions, J. Univ Kuwait (Sci) 8: 7-15 (1991).
- [4] Lyndon, R.C. and Schupp, P.E., Combinational group theory, Springer-Verlag (1977).

المستخلص . في هذا البحث نبرهن على إنه إذا أثرت الزمرة G على البيان X تحت شرط معين على مولدات وعلاقات G فإن البيان X يكون شجرة .