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ABSTRACT. In this paper, two unified algorithms are developed for the
ephemerides of visual binaries of quasi-parabolic orbits for either the
elliptic or hyperbolic case. The numerical applications proved the ef-
ficiency of the developed algorithms.

Introduction

The study of visual binaries is of great importance as one of the most essential
sources of our present knowledge of stellar masses. Moreover, the use of these
masses leads to the discovery of the mass luminosity relationship which in turn
becomes weighty support of many theories of stellar evolution. The de-
termination of visual binary orbits is the problem of computing orbital elements
of a binary at a given epoch from a set of observed positions. The inverse prob-
lem is the computation of the position (θ°, ρ″) at a given epoch from a set of or-
bital elements, where θ is the apparent angle in degrees and ρ is the angular sep-
aration in arc seconds. What concerns us in the present paper is the computation
of the ephemerides. In general this type of computation plays an important role
in the orbit determination of visual binaries. Because, when a set of elements is
known,  (θ, ρ) at the observing times t are recalculated by the ephemerides for-
mulae, and the residuals observed-calculated (O-C) can be found. They should
be sufficiently small and mostly randomly distributed for an acceptable orbit.
Although most of the known orbits correspond to the elliptic case, in theory,
there is no restriction to the fact that the orbit may be parabolic or hyperbolic.
The ephemerides formulae for these cases are exactly the same formulae which
relate position and time in the corresponding conic section of the two bodies
motion, according to the celestial mechanics[1] together with the well known
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formulae

tan (θ - Ω) =  tan (ƒ + ω)  cos  i, (1.1)

and

r = r cos (ƒ + ω) sec (θ +Ω), (1.2)

where Ω, ω,  i,  ƒ, and r have their usual meaning for orbits. Equations (1.1) and
(1.2) convert the values of ƒ and r of the companion in the true orbit into ∂ and
ρ. In the orbit determination of visual binaries, provisional quasi-parabolic or-
bits are used to represent the periastron section of a high eccentricity orbit of
long and indeterminate period[2]. In other words, the different types of conic
motion not only exist naturally, but can also be used to solve some critical or-
bital situations of visual binary systems. The serious problem of the quasi-
parabolic orbits, for both elliptic and hyperbolic cases is due to the in-
determinacy of Kepler�s equation as the eccentricity e tends to unity. On the
other hand, as the semimajor axis a increases, both the mean anomaly and the
eccentric  anomaly become vanishingly small but of course of definite values.

Consequently, the conventional series solution for these critical orbits leads
to divergent or at best weak convergent series. Motion predictions of these very
critical orbits can not therefore be treated by the conventional methods of orbit
determination and need special devices. The above mentioned importance of
computation of the ephemerides and critical situation of quasi-parabolic orbits
are what motivated our work to develop the two unified algorithms for com-
puting visual binaries ephemerides of quasi-parabolic orbits for both elliptic and
hyperbolic cases. We present the applications of the algorithms to the binaries
ADS 13103 and ADS 11632.

Formulations

In both algorithms (referred to in Section 3), the ephemerides (θ, ρ) of the
quasi-parabolic orbits of visual binaries are obtained by two steps: (1) computa-
tion of the radial distance r and the true anomaly f at any time t, then, (2) the so-
lution of Equations (1.1) and (1.2) for the ephemerides (θ, ρ) at time t. In what
follows, the basic equations of (r, f) are formulated for each algorithm, while
their utilization on digital computers for (θ, ρ) will be given in Section 3.

Unified Gauss Method

The first algorithm uses unified Gauss method for quasi-parabolic orbits re-
cently developed by Sharaf et al.[3] (hereafter referred to as Paper I0. What con-
cerns us in the present paper among the formulations of Paper I are the fol-
lowing
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(2.1)

(2.2)

where the pericenter distance q is

(2.3)

(2.4)

W is the solution of the cubic equation

(2.5)

τ,  µ are respectively, the time of periastron passage and the gravitational con-
stant. With the units usually used in visual binaries computation, µ is given as

µ = 4π2 (m1 + m2) π″3   , (2.6)

where π″ is the parallax in arcseconds and m1,2 the masses of the components of
the visual binary system in solar mass units. The constants B and C are given in
Paper I as power series in A developed up to the twentieth power. In the present
paper, these constants are given up to the fourth power, which is very sufficient
for ephemerides calculations. These are

(2.7)

(2.8)

Finally, the upper sign is used for elliptic orbits, while the lower sign for
hyperbolic orbits.

Method of Successive Approximations

The second algorithm uses a successive method for quasi-parabolic orbits de-
veloped as follows.
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Let

(2.9)

The relation between the radial distance r and the orbital parameter p is given
for both types of orbits as

(2.10)

which could be written as

(2.11)

where

(2.12)

We seek a solution of Kepler�s equation as a power series in λ,

(2.13)

Now, according to the law of areas, we have

(2.14)

Expanding the right-hand side by polynomial division to produce a power se-
ries in λ and integrating term by term, yields

(2.15)

Finally, we substitute for ψ  from Equation (2.13) and equate coefficients of
corresponding powers of λ. The zeroth-order term ao is the one and only real
root of

(2.16)

The higher-order terms can be obtained up to any power; again for ephem-
erides calculations it seems that the following coefficients is sufficient:
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It should be noted that Equations (2.9) to (2.17) could be applied to both el-
liptic and hyperbolic orbits  and with λ positive in the former case and negative
in the latter, so that the second algorithm is also unified.

Computational Developments

Solution of Cubic Equation

The cubic equation encountered in both algorithms (Equations (2.5), (2.6)) is
of the form

 X3 + 3X = 2S , (3.1)

where S is non-negative, so according to Descartes� rule of changing signs,
there is only one real solution of Equation (3.1). This solution is easily obtained
analytically as

(3.2)

In what follows, the implementations of the formulations of Section 2 for dig-
ital computers will be given through the following two computational al-
gorithms, each described by its purpose, input and its computational sequence.

Computational Algorithm 1

● Purpose: To compute (θ, ρ) or a visual binary system of quasi-parabolic
orbit for both elliptic and hyperbolic cases at time t by using the unified Gauss
method of Subsection 2.1.

● Input: q″, i, Ω, ω, µ, t, τ, e, Tol (specified tolerance).

● Computational Sequence:

(1) Set B = 1
(2) Solve the cubic Equation (2.5) for W by the method given in Subsection

3.1.

X = + + + +[ ( ) ] – [ ( ) ]   ./ / / – /S S S S2 1 2 1 3 2 1 2 1 31 1
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(3) Compute A from Equation (2.4).
(4) Calculate new value of B from power series (2.7).
(5) Repeat step 2 to 4 until A ceases to change within the specified Toler-

ance Tol.
(6) With this value of A calculate C from power series (2.8).
(7) Calculate f  from Equation (2.1).
(8) Calculate r from Equation (2.2).
(9) Calculate Q from

(10) Calculate ∂ from

θ = (Ω + Q) × 180º / π

(11) Calculate ρ from

(12) The algorithm is completed.

Computational Algorithm 2

● Purpose: To compute (θ, ρ) for a visual binary system of quasi-parabolic
orbit for both elliptic and hyperbolic cases at time t by using the method of suc-
cessive approximations of Subsection 2.2.

● Input: q″, i, Ω, ω, µ, t, τ, e.

● Computational Sequence:

(1) Calculate λ from Equation (2.9).
(2) Compute p from p = q (1 + e).
(3) Solve the cubic Equation (2.16) for ao, y the method given in Sub-

section 3.1.
(4) Calculate a1, a2 and a3 from Equations (2.17).
(5) Compute ψ  from ψ  = ao + a1λ + a2λ2 + a3λ3.
(6) Compute r from Equation (2.11).
(7) Compute f from Equation (2.12).
(8) Compute Q from
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(9) Compute θ  from

θ  = (Ω + Q) × 180º / ρ.

(10) Calculate ρ from 

(11) The algorithm is completed.

Numerical Applications

The above computational algorithms are applied to obtain the ephemerides
for visual binaries Σ 2597 = ADS 13104, Heints[4] and Σ 2398 = ADS 11632,
Knudsen[2] of elliptic and hyperbolic orbits respectively. Ten epochs are con-
sidered for each binary and are selected between the years 1994.0 to 2006.0 for
the elliptic orbit, and between the years 1945.0 to 1990.0 for the hyperbolic or-
bit. The input data for the binaries taken from their respective references are
listed in Table 1. The ephemerides of each binary are listed in Tables 2 and 3
for the two algorithms. The adapted constants are taken as Tol. = 10�10 and µs
computed for each binary from Equation (2.6). The accuracy of the computa-
tions are checked for both orbits by the two bodies condition,

r � q(1 + e) (1 + e cos f)�1 = 0

TABLE 1.  Elements.

ADS Name τ(y) q″ e i″ ω º Ωº π″ m1 + m2

13104 Σ  2579 1972.50     0.0698 0.936 101.5 142   82.5 0.015 2.68   M

11632 Σ 2398 1871.53 16.547 1.043     76.74 345.6 145.91 0.286 0.696 

TABLE  2.  Ephemerides from algorithm 1.

ADS 13104 ADS 11632

t θº ρº t θº ρº

1994.0 107.127 0.334 1945.0 158.554 16.074
1995.0 106.451 0.351 1950.0 159.758 15.830
1996.0 105.839 0.365 1955.0 161.000 15.571
1997.0 105.280 0.354 1960.0 162.285 15.299
1998.0 104.768 0.402 1965.0 163.618 15.017
1999.0 104.296 0.418 1970.0 165.002 14.727
2000.0 103.860 0.435 1975.0 166.442 14.431
2002.0 103.077 0.467 1980.0 167.944 14.132
2004.0 102.393 0.498 1985.0 169.510 13.830
2006.0 101.789 0.528 1990.0 171.146 13.528

ρ ω= +r f

Q

 cos ( )
cos 

 .
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TABLE 3.  Ephemerides from algorithm 2.

ADS 13104 ADS 11632

t θº ρº t θº ρº

1994.0 107.171 0.333 1945.0 158.550 16.075
1995.0 106.499 0.350 1950.0 159.753 15.831
1996.0 105.890 0.367 1955.0 160.996 15.571
1997.0 105.335 0.388 1960.0 162.281 15.300
1998.0 104.826 0.400 1965.0 163.615 15.017
1999.0 104.358 0.416 1970.0 165.000 14.727
2000.0 103.26  0.432 1975.0 166.440 14.432
2002.0 103.151 0.463 1980.0 167.942 14.132
2004.0 102.476 0.494 1985.0 169.510 13.830
2006.0 101.881 0.523 1990.0 171.147 13.528

and was  found to be at least of order 10�7 for each orbit.

Conclusion

In concluding this paper, two unified algorithms are developed for ephem-
erides of visual binaries of quasi-parabolic orbits for either elliptic or hyperbolic
cases. The first algorithm uses unified Gauss method, while the second uses
successive approximations method. The numerical applications proved the ef-
ficiency of the developed algorithms.
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