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ABSTRACT. An accurate algorithm has been constructed for deter-
mination of the fundamental period Po of observed periodic phe-
nomenon. The algorithm is based on the best phase arrangement
which produces the minimum polygonal line for the observed data.
Numerical application of the algorithm is considered for δ Cephei and
an accurate period of 5d 8h 55m 42s. 27 was obtained together with its
mean light curve.

Introduction

The study of variable stars is extremely important in astronomy, since the cat-
egory covers many different types associated with critical stages in stellar
evolution. The information gained from variable stars has therefore many ap-
plications in astronomy. Also study of variable stars as a whole forms one of the
major branches of stellar astronomy. Such study is not only an aim in itself, but
it can also be used to study, and even solve many problems that faced and still
facing astronomers. This concept may be cleared when considering the fol-
lowing points:

1) Several decades ago, astronomers began to use certain group of variable
stars as distance indicator, because they are very luminous and their distinctive
light variations permit easy and certain identification even at enormous distances[1].
Because they are supergiant stars, they can be seen over intergalactic distances.
They serve as �Standard Candles� because they are scattered throughout the night
sky that serve as mileposts for astronomical surveys of the universe[2].

2) Many groups of variable stars have a particular position in the galaxy and
hence they have been used as tools to study the galactic structure.
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3) Variable stars play an important role in the field of stellar evolution, since
it is known that these stars vary in brightness only at definite stages of their
evolution. A good review on this topic, which is based on the study of two Clas-
sical Cepheids: Polaris and Y Oph, is given by El-Khateeb[3].

4) The existence of variable stars of the same type in quite different stellar
systems allows to believe that evolution of these systems posses through similar
stages.

Any observed data of a periodic physical phenomenon, such as the light
curve or the radial velocity curve of a variable star, can be classified as de-
terministic because they can be described by an explicit mathematical re-
lationship. For this reason a periodic phenomenon, or more generally a large
scale regular phenomenon, should be accurately observed, so that a theoretical
model may be formulated and updated based on further observations.

In this paper, we have constructed an algorithm to determine the fundamental
period and the mean light curve of a variable star. Analytical developments of
the problem are given in Section 2, while the computational developments are
given in Section 3. Numerical applications to δ Cephei are given in Section 4.

Analytical Development

The observation provides N estimates y(k), t(k); k = 1,2, ..., N, where t is the
time (usually Universal time) and y the measure of the physical parameters, such
as magnitude, radial velocity, radio flux and O-C residuals, which exhibit the pe-
riodic variability (period = Po) that is going to be studied. The used algorithm is
based on a sequential scanning of the period[4], with the range P1 → P2, which
presumably contains the period Po, and with a step ∆P. The range and the step
are input data. The values of the period that will be tried as as follow

P = P1 + i ∆P  ;  i = 1,2, ... until P ≥ P2 (1)

A second option is followed if the user input ∆P = 0, according to

(2)

where β > 0 is necessary to reach the stop condition for the period series given
by Equation (2).

From Equation (2) we note that:

(a) The period series converges to

P = P2 (1 + β) � β P1  ,          for i  →  ∞ (3)

with the stopping condition
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P  >  P2 (4)

(b) The permissible values of β which allow the limiting value of P [Equation
(3)] to reach the stopping condition of Equation (4) are

β    >  0 (5)

(c) It concentrates the values of the period near P2 , so that this part of the
range can be better scanned, and should be chosen whenever the period Po is
expected to be close but less than P2.

Equations (1) or (2) provide N1 values of the period: Pk ; k  = 1,2, ..., N1 and
therefore N1 arrangements of the phase array,

φj  = {t(j) � t(1)} / Pk    ;    j = 1,2, ..., N,    ;    k = 1,2, ..., N1 (6)

In order to satisfy the condition 0 < φj < 1 ∀ j = 1,2, ..., N , the fractional part
of each phase should be taken, that is

φj  =  φj  �  [φj] (7)

where [x] denotes the largest integer ≤ x  ;  x ≥ 0.

Each phase arrangements correspond to a different length of the polygonal
line connecting the points (φj  ,  y(j)) ;

(8)

Illustration of Equation (8) is shown in Fig. 1.
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FIG. 1. Illustration of Equation (8).
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The period Pk corresponding to the minimum length of the polygonal line
will be chosen as estimate of the Po.

Computational Developments

Computational Algorithm (1)

  Purpose

To arrange arrays P, T, Y  in the sense of increasing values of the array P.

  Input Data

N values of P(j), T(j), Y(j)  ;  j = 1,2, ..., N.

  Computational Sequence

1 � For k = 1,2, ..., N � 1 , do :
Set H = P(k), j1 = k

For j = k, k + 1, ..., N do:
 If P(j) ≥ H Next to j
 Set H = P(j)  ,  j1 = j

Set P(j1) = P(k)  ,  P(k) = H
Set H = T(j1)  ,  T(j1) = T(k)  ,  T(k) = H
Set H = Y(j1)  ,  Y(j1) = Y(k)  , Y(k) = H

2 � End.

Computational Algorithm (2)

  Purpose

To arrange arrays T and Y  in the sense of increasing values of the array T.

  Input Data

N  values of  T(j) and Y(j) ;  j = 1, 2, ..., N

  Computational Sequence

1 � For k = 1,2, ..., N � 1  ,  do  
Set H = T(k)  ,  j1 = k

For j = k, k + 1, ..., N , do :

 If T(j) ≥ H Next to j
 Set H = T (j) , j1 = 1

Set T(j1) = T(k)  ,  T(k) = H
Set H = Y(j1)  ,  Y(j1) = Y(k), Y(k) = H
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2 � End.

Computational Algorithm (3)

  Purpose

To determine H, R1, and Imin, where H is the minimum value of the array R,
R1 its maximum value, and Imin is the order of H in the array.

  Input Data

N1 values of R(j)  ;  j = 1,2, ... , N1.

  Computational Sequence

1 � Set H = R(1)  ,  j1 = 1 , R1 = R(1)

2 �    For k = 1,2, ... , N1 , do :

  If R(K) > H go to 3

  Set H = R (k)  , j1 = K

3 � If R(k) < R1 Next to K

  R1 = R(k)

4 � Imin = j1
5 � End.

Computational Algorithm (4)

  Purpose

To determine an estimate of the fundamental period Po of periodic phe-
nomena for variable stars using the minimum polygonal line method for ob-
served data, with:

1 � Sequential scanning of Equation (1), or
2 � Non linear scanning of Equation (2).

  Input Data

1 � N = number of observed data (magnitudes, radial velocity, O-C residuals,
radio fluxes, etc.).

2 � T(j) , Y(j) ; j = 1,2, ..., N  ≡  observations.
3 � P1, P2 = range of values of the period that will be investigated.
4 � IT = positive integer, takes the value 1 or 2 such that if IT = 1 the al-

gorithm uses sequential scanning, while for IT = 2 it uses non linear scanning.
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5 � α stands for s if IT = 1 , and for β if IT = 2. 

  Computational Sequence

1 � Use computational algorithm 2 to arrange the arrays T and Y in the
sense of increasing values of the T.

  2 � If IT = 2 go to step 17
  3 � If α > (P2 � P2)/300 go to step 5
  4 � The value of α is too small for the given period range. Use larger value

of α  and go to step 3
  5 � If α   < (P2 � P1) go to step 7
  6 � The value of α is too large for the given period range. Use smaller value

of  α  and go to step 3
  7 � N1 = 1  (Sequential scanning)
  8 � P3(N1) = P1 + α (N1 � 1)
  9 � If P3(N1) > P2 go to step 27
10 � For j = 1,2, ..., N, do :

φ(j) = (T(j) � T(1))/P3(N1)

φ(j) = φ(j) � [φ(j)]

11 �  Use computational algorithm 1 to arrange the arrays φ, T, and Y in the
sense of increasing the phase φ.

12 � R(N1) = 0
13 � For j = 1,2, ..., N � 1 , do :

14 � Use computational algorithm 2 to arrange the arrays T( ) and Y( ) in the
sense of increasing the values of the T.

15 � If N1 ≥ 300 go to step 27 (Too many iterations ; the loop stops here)
16 � N1 = N1 + 1 , go to step 8
17 � N1 = 1 (The non linear scanning)
18 � P3(N1) = P1 + (P2 � P1) (1 + α � 1/N1)
19 � If P3(N1) > P2   go to step 27
20 � For j = 1,2, ..., N  ,  do  :

φ(j) = (T(j) � T(1)/P3(N1)

φ(j) = φ(j) � [φ(j)]

21 � Use computational algorithm 1 to arrange the arrays φ( ), T( ) and  Y( )
in the sense of increasing the values of the phase φ.

22 � R(N1) = 0

  
R N R N j j Y j Y j( ) ( ) [ ( ) – ( )] [ ( ) – ( ]

/
1 1
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23 � For j = 1,2, ..., N � 1 , do  :

24 � Use computational algorithm 2 to arrange the arrays T and Y in the
sense of increasing values of the T.

25 � If N1 ≥ 300  go to step 27
26 � N1 = N1 + 1,  go to step 18
27 � Use computational algorithm 3 to compute the minimum value H and

the maximum value R1 of the array R, also to compute the order Imin of the
value H.

28 � Po =P3 (Imin)
29 � End.

Computational Algorithm (5)

  Purpose

To compute approximate value of the period P.

  Input Data

mj ,  tj  ;  j = 1,2,3, ..., N  and  Pa = [P]

  Computational Sequence

1 � From the list of observations, identify the maxima and minima.
2 � Determine the intervals between successive maxima, let their sum be A.
3 � Determine the number of cycles between the intervals of successive maxi-

ma, let their sum be S1.
4 � Determine the intervals between successive minima, let their sum be B.
5 � Determine the number of cycles between the intervals of successive mini-

ma, let their sum be S2.
6 � Compute an approximate value of the period P from :

P = (A + B) / (S1 + S2).

7 � End.

Computational Algorithm (6)

  Purpose

To compute the difference, ε = O � C, between the observed and calculated
times of each maxima.

  R N R N j j Y j Y j( ) ( ) [ ( ) – ( )] [ ( ) – ( )]{ } /
1 1

2 2 1 21 1= + + + +φ φ
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  Input Data

1 � The observed values of mj ,  tj  ;  j = 1,2, ..., N
2 � The period P.

  Computational Sequence

1 � From the observed values determine the epoch Eo of the first maximum.
2 � Determine the observed date of maximum (O) and the corresponding

number of the cycle X.
3 �  Compute the calculated value of the maxima from C = Eo + XP.
4 �  Compute ε, the difference between the observed and calculated times of

each maximum from ε = O � C.
5 � End.

Computational Algorithm (7)

  Purpose

To compute the coefficients ao and a1 for the least squares fit of the relation
ε = ao + a1 X

Input Data

ej , Xj  ;  j = 1,2, ..., n

  Computational Sequence

1 � Compute the sums

2 � Compute ∆ from ∆ = n S � T2.
3 � Compute ao and a1 from

ao = (B1S � B2T) / ∆     ,     a1 = (B2n � B1T) / ∆.

4 � End.

Computational Algorithm (8)

  Purpose

To compute the values of the period P and the epoch Eo of the first maxi-
mum.
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  Input Data

P, Eo , εj   , Xj  and  Tol  ;  j  = 1,2, .., n 

where  Tol is a given tolerance.

  Computational Sequence

1 � Use algorithm 7 to compute ao and a1.
2 � If (|ao| and |a1| , Tol) go to step 6.
3 � Compute the improved values of P and Eo from

P = P + a1   ,   Eo = Eo + ao  .

4 � With this value of P, use algorithm 6 to compute new values of ε.
5 � Go to step 1.
6 � Consider the last two values of P as P1 and P2, then use algorithm 4 to

find the final improvement of the period P.
7 � End.

Computational Algorithm (9)

  Purpose

To compute the phase φ of the light curve.

  Input Data

Eo , P , mj   and   tj  ;  j =  1,2, .., N.

  Computational Sequence

1 � Compute ∀ j = 1,2, .., N , Zj  from    Zj = (tj � Eo) / P.
2 � Compute the phases Φj  ;  j = 1,2, ..., N  from  Φj = Zj � [Zj]
3 � End.

Some Notes

a) It is recommended to plot the polygonal length against the period to:
1. Allow us to identify the presence of secondary minima.
2. Verify that the selected value of the period corresponds to an absolute

minimum of Rk ;  k = 1,2, .., N � 1.
b) The precision of the algorithm depending on scanning value α.
c) In order to increase the precision, the computation may be carried out in

two different  steps: first, run Algorithm 4 with IT = 1 with α not too large {for
example (P2 � P1)/200} and then run the algorithm with IT = 2 with P2 very
close to, but greater than, the first result.
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Numerical Applications and Results

The visual and photo-visual observations of δ Cephei[5] are listed in Table 1.
To construct the light (luminosity) curve of δ  Cephei, the following steps are to
be performed.

TABLE 1.  Visual and photo-visual observations of δ Cephei, obtained between September and De-
cember, 1979 by E. Schweitzer.

    Date      Time
Julian day

Comparison mv Date    Time
Julian day

Comparison mv2 444 000 +  2 444 000 +

Sept. 16  19.12 133.3007 a6 v 1b 4.2 Oct. 22 18.32 169.2722 a3 v 4b 3.9
16  23.52 133.4944 a6 v 1b 4.2         22 22.15 169.4271 a3 v 4b 3.9
17  19.09 134.2979 a6 v 1b 4.2 23 18.08 170.2556 a5 v 2b 4.1
17  22.55 134.4449 a6 v 1b 4.2 24 17.32 171.2305          v   b    4.3
18  19.06 135.2958 a2 v 5b 3.8 24 23.28 171.4778 b1 v    4.4
18  21.20 135.3889     v 2a 3.4 25 17.42 172.2375 a4 v 3b 4.0
18  22.51 135.4521 a1 v 6b 3.7 25 22.55 172.4549 a5 v 3b 4.1
24  19.41 141.3222      v   a 3.6 26 17.22 173.2236      v   a 3.6
25  19.45 142.3230 a2 v 4b 3.8 26 23.02 173.4597      v   a 3.6
26  18.31 143.2715 a2 v 5b 3.8 Nov.  1 17.23 179.2312      v   a 3.6
26  20.56 143.3722 a3 v 3b 3.9 2 18.05 180.2535 a3 v 4b 3.9
26  23.48 143.4917 a4 v 2b 4.0 4 19.43 182.3216      v 1b 4.4
27  18.30 144.2708 a5 v 1b 4.2 4 22.00 182.4167       v   b 4.3
27  23.57 144.4979 b1 v     4.4 5 17.02 183.2097 a4 v 3b 4.0
28  18.39 145.2771 a4 v 3b 4.0 9 18.11 187.2576 a5 v 1b 4.2
28  19.22 145.3070 a4 v 3b 4.0 9 22.26 187.4348       v   b 4.3
29  19.12 146.3000       v   a 3.6 11 16.55 189.2049       v   a 3.6
30  18.06 147.2535 al v 5b 3.7 12 00.33 189.5229      vl4a 3.5
30  20.21 147.3479 al v 5b 3.7 14 21.53 192.4118      v   b 4.3

Oct.  1  01.59 147.5771 a2 v 5b 3.8 16 19.25 194.3091 a2 v 5b 3.8
1  18.20 148.2639 a3 v 4b 3.9 17 01.00 194.5417       v   a 3.6
1  21.17 148.3868 a2 v 4b 3.8 17 16.46 195.1987 a1 v 6b 3.7
2  01.46 148.5737 a4 v 3b 4.0 22 16.45 200.1980       v   a 3.6
2  18.03 149.2521 a5 v 2b 4.1 28 20.50 206.3680 a3 v 4b 3.9
2  21.51 149.4104 a4 v 3b 4.0 30 17.05 208.2118 a5 v 1b 4.2
2  22.04 149.4195 a5 v 1b 4.2 Dec.   2 16.50 210.2014 a4 v 3b 4.0
3  17.55 150.2465 b1 v     4.4 2 23.00 210.4583 a2 v 5b 3.8
3  20.18 150.3458      v   b 4.3 3 17.00 211.2083      v 1a 3.5
6  17.55 153.2465 a3 v 4b 3.9 3 22.30 211.4375 a1 v 5b 3.7
7  18.50 154.2847 a3 v 4b 3.9 4 17.42 212.2375 a4 v 3b 4.0
8  18.35 155.2743  vb         4.3 4 21.55 212.4132 a4 v 3b 4.0
9  18.46 156.2830 a3 v 4b 3.9 7 16.40 215.1945 a5 v 2b 4.1

10  18.34 157.2736      v   a 3.6 7 21.33 215.3979 a5 v 2b 4.1
12  17.44 159.2389 a3 v 4b 3.9 11 16.35 219.1910 a5 v 2b 4.1
15  17.23 162.2243 a1 v 5b 3.7 12 22.02 220.4181      v   b 4.3
18  18.42 165.2792 a5 v 2b 4.1 14 16.16 222.1778 a2 v 5b 3.8
18  22.00 165.4167 a5 v 1b 4.2 16 17.23 224.2243 a5 v 2b 4.1
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TABLE 1.  Contd.

Date    Time
Julian day

Comparison mv Date   Time
Julian day

Comparison mv2 444 000 + 2 444 000 +

19  18.05 166.2535      v   b 4.3 18 17.00 226.2083 a2 v 5b 3.8
19  22.42 166.4459 b1 v    4.4 23 18.42 231.2792 a5 v 2b 4.1
20  17.24 167.2250 a3 v 4b 3.9 25 21.21 235.3896 a5 v 2b 4.1
20  21.20 167.3889 a1 v 6b 3.7 30 17.48 238.2417 a2 v 5b 3.8
21  19.17 168.3035      v   a 3.6 31 23.18 239.4708 a3 v 4b 3.9
21  23.05 168.4618      v  a 3.6

Note: Photo-visual observations are underlined.

1) Find an approximate value of the period P by using Algorithm 5, with mj
and tj as given in  Table 2 (and shown in Fig. 2) and Pa = 5 days. The output of
the algorithm is listed in Table 3 (and shown in Fig. 3). It follows from Table 3
that

P + (A + B) / (S1 + S2) = (69.8861 + 47.9139) / (13 + 9)

so that the approximate value of the period is P = 5.354517 days

TABLE 2. Data for the light curve of a variable star.

Day m Day m Day m

  0 5.45 30 5.31 60 4.50
  5 5.10 35 5.40 65 4.79
10 4.50 40 5.47 70 5.02
15 4.79 45 5.50 75 5.18
20 5.02 50 5.45 80 5.31
25 5.18 55 5.10

FIG. 2. Data for the light curve of a variable star.
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TABLE  3. Approximate value of the period.

Maxima Minima

Julian date of 
Length of the Number

Julian date of
Length of the Number

observations
cycle (days) of cycles

observations
cycle (days) of cycles

2 444 000 + 2 444 000 +

141.3222      4.9778 1 144.4979   5.7983 1
146.3000    10.9736 2 150.2962   4.9781 1
157.2736      5.0597 1 155.2743 11.0754 2
162.3333      6.0493 1 166.3497   5.0045 1
168.3826      4.9590 1 171.3542 11.0150 2
173.3416      5.8896 1 182.3692   5.0656 1
179.2312    10.1327 2 187.4348   4.9764 1
189.3639      5.1778 1 192.4118
194.5417      4.6563 1
200.1980    11.0103 2
211.2083    

A = 69.8861      S1 = 3       B = 47.9139       S2 = 9

2) Find the difference, ε = O � C, between the observed and calculated times
of each maximum by using Algorithm 6, with  P = 5.354517d and Eo =
2444141.3222. The output is listed in Table 4 (and shown in Fig. 4).

FIG. 3. Approximate period of δ Cephei.
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TABLE 4. The differences ε = O � C.

Observed date Calculated date
X of maximum (O) of maximum (C) ε = O � C

2 444 000 + 2 444 000 +

  0 141.3222 141.322200 0
  1 146.3000 146.676717 � 0.376717
  3 157.2736 157.385751 � 0.112151
  4 162.3333 162.740268 � 0.406968
  5 168.3826 168.094785 + 0.287815
  6 173.3416 173.449302 � 0.107702
  7 179.2312 178.803819 � 0.427381
  9 189.3639 189.512853 � 0.148953
10 194.5417 194.867370 � 0.325670
11 200.1980 200.221887 � 0.023887
13 211.2083 210.930921 + 0.277379

3) Find the improved values of the period P and the epoch Eo of the first
maximum by using Algorithm 8 as follows:

a) With P = 5.354517d;  Eo = 2444141.3222; εj , Xj; j  = 1,2, ..., 11 given
from Table 4, and Tol = 10�5, Algorithm 7 gives ao = � 0.168224, a1 =
+ 0.019435.

 FIG. 4. The differences ε = O � C.

b) Since |ao| and |a1| > Tol, then

P = P + a1 = 5.373952   ,   Eo = Eo + ao = 2444141.153976.
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c) With this value of P, Algorithm 6 gives new values of ε which are list-
ed in Table 5 (and shown in Fig. 4).

TABLE 5.  New values of differences ε = O � C.

Observed date Calculated date
X of maximum (O) of maximum (C) ε = O � C

2 444 000 + 2 444 000 +

  0 141.3222 141.1539 0.1682
  1 146.3000 146.5279 � 0.2279
  3 157.2736 157.2758 � 0.0022
  4 162.3333 162.6498 � 0.3165
  5 168.3826 168.0237 0.3589
  6 173.3416 173.3977 � 0.0561
  7 179.2312 178.7716 � 0.4596
  9 189.3639 189.5195 � 0.1556
10 194.5417 194.8935 � 0.3518
11 200.1980 200.2674 � 0.0694
13 211.2083 211.0154 + 0.1929

d) With the X ,s and ε ,s from Table 5, Algorithm 7 gives

ao = 4.271397 × 10�11   ,   a1 = � 0.6075956 × 10�14.

e) Since |ao| and |a1| < Tol, then consider P1 and P2 as

P1 = 5.354517d   ,   P2 = 5.3739517d

as the input values of Algorithm 4, and we get for the period the final value

P = 5.372017d  =  5d 8h 55m 42s.27

Table 6 gives values of the periods and the polygonal length. From this table
we see that the minimum value of the polygonal length is 7.987093127233910
which corresponds to the period P = 5.372017d, which confirmed the above re-
sult of the final period. Values of the color, luminosity, mass, and radius of the
star δ Cephei can therefore be computed from the well-known relation[6-9].

4) Compute the phases using Algorithm 9 and we get Table 7 between phas-
es φ and the apparent magnitudes m. Finally, the required luminosity curve of δ
Cephei is given in  Fig. 5; the SPLINE procedure is used to obtain the best fit to
the light curve.

In concluding this paper, an accurate algorithm has been constructed for pe-
riod determination of periodic phenomenon. The algorithm was applied for δ
Cephei in order to determine its period and mean light curve.
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TABLE 6.  Periods against polygonal length.

P R P R

9.3539949 7.98709312723391 5.3640170 9.14592725084059
5.3545170 9.14204661547270 5.3645170 9.14508997310208
5.3550170 9.14504987123653 5.3650170 9.14185571943845
5.3555170 9.14927487739509 5.3655170 9.33878846355305
5.3560170 9.34374886562902 5.3660170 9.33971323162058

5.3565170 9.16133834392907 5.3665170 9.34093136437293
5.3570170 9.14714647145330 5.3670170 9.15619710929421
5.3575170 9.14766210044817 5.3675170 8.74177743519474
5.3580170 8.96811903601509 5.3680170 8.74111067783573
5.3585170 8.96543689697828 5.3685170 8.83711771969924

5.3590170 8.96358932988842 5.3690170 8.83778109592244
5.3595170 8.96678962938762 5.3695170 8.83923796704616
5.3600170 9.15885864489083 5.3700170 8.34926856886708
5.3605170 9.15792073823789 5.3705170 8.35123335639887
5.3610170 9.35399485957666 5.3710170 8.36753964520533

5.3615170 9.35373447388736 5.3715170 8.37014677692709
5.3620170 9.35035398911963 5.3720170 7.98709312723391
5.3625170 9.16164923116921 5.3725170 7.98951129474225
5.3630170 9.17408883830942 5.3730170 8.19236371595891
5.3635170 9.14702614916558 5.3735170 8.16332238140989

TABLE  7.  The phases and apparent magnitudes for δ Cephei.

φ m φ m φ m

� .4619 4.2 0.6285 4.3 0.9947 3.6
� .4258 4.2 0.8163 3.9 0.0039 3.5
� .2763 4.2 0.0007 3.6 0.5416 4.3
� .2489 4.2 0.3665 3.9 0.8948 3.8
� 0.905 3.8 0.9222 3.7 0.9381 3.6

� .0732 3.4 0.9425 3.5 0.0604 3.7
� .0614 3.7 0.4909 4.1 0.9910 3.6
0.0313 3.6 0.5165 4.2 0.1396 3.9
0.2176 3.8 0.6723 4.3 0.4828 4.2
0.3942 3.8 0.7081 4.4 0.8532 4.0

0.4129 3.9 0.8531 3.9 0.9010 3.8
0.4352 4.0 0.8836 3.7 0.0406 3.5
0.5802 4.2 0.0539 3.6 0.0833 3.7
0.6225 4.4 0.0833 3.6 0.2322 4.0
0.7675 4.0 0.2342 3.9 0.2649 4.0
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TABLE  7.  Cont.

φ m φ m φ m

0.7731 4.0 0.2630 3.9 0.7826 4.1
0.9579 3.6 0.4173 4.1 0.8205 4.1
0.1354 3.7 0.5987 4.3 0.5266 4.1
0.1530 3.7 0.6448 4.4 0.7550 4.3
0.1957 3.8 0.7862 4.0 0.0826 3.8

0.3235 3.5 0.8267 4.1 0.4635 4.1
0.3464 3.8 0.9698 3.6 0.8328 3.8
0.3812 4.0 0.0137 3.6 0.7768 4.1
0.5075 4.1 0.0880 3.6 0.5419 4.1
0.5369 4.0 0.2784 3.9 0.0729 3.8

0.5386 4.2 0.6633 4.4 0.3016 3.9
0.6926 4.4 0.6810 4.3
0.7111 4.3 0.8287 4.0
0.2510 3.9 0.5822 4.2
0.4443 3.9 0.6152 4.3

FIG. 5. Luminosity curve of δ Cephei.
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W�ËUHOI�« Âu�M�« w� dOOG��« ��Ë� qOK��� w�U�� Z�U�d�
Âu�M�« ÁcN� �¡UC��ô«  UOM�M� vK� t�UIO�D�Ë

w�d�u� tK�« b����� ÊU�b�
e�eF�« b�� pK*« WF�U� − ÂuKF�« WOK� − WOJKH�« ÂuKF�« r��

W��uF��« WO�dF�« WJKL*«−��b���

d?O?G??��« ��Ë� 5O?F?�� oO??�� w�U?�?� Z�U�d?� rO?L?B� - Æ hK�??�?�*«
qC�_ WLO� dG6√ vDFÔ� v�?� W��dÔ�  WN�«Ë qC�√ vK� W��Ëb�« d�«uEK�
«cN� W��b?�  UI?O�D� X�d?� Ï√Æ���u6d*«  U�U?O��« s� d?O�F?��« tMJ1 qJ�
WI?O�� WL?O� vK� UMKB�Ë ,�©�U�����® d?OG�*« ÍËU?HOI�« r�M?�« vK� Z�U�d��«
UL?� Æ�WO�U� ¥≤\≤∑ ,�WI?O�� µµ ,� U�U?� ∏ ,� ÂU�√ µ w�Ë ,�dO?G��« ��Ëb�

 Æ�r�M�« «cN� j�u�*« wzuC�« vM�M*« vK� UMKB�




