Computational Algorithm for Period Analysis and its Applications to Luminosity Curves of Cepheid Variables

A.A. Goharji
Astronomy Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

An accurate algorithm has been constructed for determination of the fundamental period P_{o} of observed periodic phenomenon. The algorithm is based on the best phase arrangement which produces the minimum polygonal line for the observed data. Numerical application of the algorithm is considered for δ Cephei and an accurate period of $5^{\text {d }} 8^{\text {h }} 55^{\mathrm{m}} 42^{\mathrm{s}}$. 27 was obtained together with its mean light curve.

Introduction

The study of variable stars is extremely important in astronomy, since the category covers many different types associated with critical stages in stellar evolution. The information gained from variable stars has therefore many applications in astronomy. Also study of variable stars as a whole forms one of the major branches of stellar astronomy. Such study is not only an aim in itself, but it can also be used to study, and even solve many problems that faced and still facing astronomers. This concept may be cleared when considering the following points:

1) Several decades ago, astronomers began to use certain group of variable stars as distance indicator, because they are very luminous and their distinctive light variations permit easy and certain identification even at enormous distances ${ }^{[1]}$. Because they are supergiant stars, they can be seen over intergalactic distances. They serve as "Standard Candles" because they are scattered throughout the night sky that serve as mileposts for astronomical surveys of the universe ${ }^{[2]}$.
2) Many groups of variable stars have a particular position in the galaxy and hence they have been used as tools to study the galactic structure.
3) Variable stars play an important role in the field of stellar evolution, since it is known that these stars vary in brightness only at definite stages of their evolution. A good review on this topic, which is based on the study of two Classical Cepheids: Polaris and Y Oph, is given by El-Khateeb ${ }^{[3]}$.
4) The existence of variable stars of the same type in quite different stellar systems allows to believe that evolution of these systems posses through similar stages.

Any observed data of a periodic physical phenomenon, such as the light curve or the radial velocity curve of a variable star, can be classified as deterministic because they can be described by an explicit mathematical relationship. For this reason a periodic phenomenon, or more generally a large scale regular phenomenon, should be accurately observed, so that a theoretical model may be formulated and updated based on further observations.

In this paper, we have constructed an algorithm to determine the fundamental period and the mean light curve of a variable star. Analytical developments of the problem are given in Section 2, while the computational developments are given in Section 3. Numerical applications to δ Cephei are given in Section 4.

Analytical Development

The observation provides N estimates $y(k), t(k) ; k=1,2, \ldots, N$, where t is the time (usually Universal time) and y the measure of the physical parameters, such as magnitude, radial velocity, radio flux and $O-C$ residuals, which exhibit the periodic variability (period $=P_{o}$) that is going to be studied. The used algorithm is based on a sequential scanning of the period ${ }^{[4]}$, with the range $P_{1} \rightarrow P_{2}$, which presumably contains the period P_{o}, and with a step ΔP. The range and the step are input data. The values of the period that will be tried as as follow

$$
\begin{equation*}
P=P_{1}+i \Delta P ; i=1,2, \ldots \text { until } P \geq P_{2} \tag{1}
\end{equation*}
$$

A second option is followed if the user input $\Delta P=0$, according to

$$
\begin{equation*}
P=P_{1}+\left(P_{2}-P_{1}\right)\left(1+\beta-\frac{1}{i}\right) ; i=1,2, \ldots \text { until } P \geq P_{2} \tag{2}
\end{equation*}
$$

where $\beta>0$ is necessary to reach the stop condition for the period series given by Equation (2).

From Equation (2) we note that:
(a) The period series converges to

$$
\begin{equation*}
P=P_{2}(1+\beta)-\beta P_{1}, \quad \text { for } i \rightarrow \infty \tag{3}
\end{equation*}
$$

with the stopping condition

$$
\begin{equation*}
P>P_{2} \tag{4}
\end{equation*}
$$

(b) The permissible values of β which allow the limiting value of P [Equation (3)] to reach the stopping condition of Equation (4) are

$$
\begin{equation*}
\beta>0 \tag{5}
\end{equation*}
$$

(c) It concentrates the values of the period near P_{2}, so that this part of the range can be better scanned, and should be chosen whenever the period P_{o} is expected to be close but less than P_{2}.

Equations (1) or (2) provide N_{1} values of the period: $P_{k} ; k=1,2, \ldots, N_{1}$ and therefore N_{1} arrangements of the phase array,

$$
\begin{equation*}
\phi_{j}=\{t(j)-t(1)\} / P_{k} \quad ; \quad j=1,2, \ldots, N, \quad ; \quad k=1,2, \ldots, N_{1} \tag{6}
\end{equation*}
$$

In order to satisfy the condition $0<\phi_{j}<1 \forall j=1,2, \ldots, N$, the fractional part of each phase should be taken, that is

$$
\begin{equation*}
\phi_{j}=\phi_{j}-\left[\phi_{j}\right] \tag{7}
\end{equation*}
$$

where $[x]$ denotes the largest integer $\leq x ; x \geq 0$.
Each phase arrangements correspond to a different length of the polygonal line connecting the points $\left(\phi_{j}, y(j)\right)$;

$$
\begin{equation*}
R_{k} \sum_{j=1}^{N-1}\left\{\left(\phi_{j}-\phi_{j+1}\right)^{2}+(y(j)-y(j+1))^{2}\right\}^{1 / 2} ; k=1,2, \ldots, N_{1} \tag{8}
\end{equation*}
$$

Illustration of Equation (8) is shown in Fig. 1.

Fig. 1. Illustration of Equation (8).

The period P_{k} corresponding to the minimum length of the polygonal line will be chosen as estimate of the P_{o}.

Computational Developments

Computational Algorithm (1)

Purpose

To arrange arrays P, T, Y in the sense of increasing values of the array P.

Input Data

N values of $P(j), T(j), Y(j) ; j=1,2, \ldots, N$.

Computational Sequence

$1-$ For $\mathrm{k}=1,2, \ldots, \mathrm{~N}-1$, do :
Set $H=P(k), j_{1}=k$
For $\mathrm{j}=\mathrm{k}, \mathrm{k}+1, \ldots, \mathrm{~N}$ do:
If $P(j) \geq H$ Next to j
Set $H=P(j) \quad, \quad j_{1}=j$
Set $P\left(j_{1}\right)=P(k) \quad, P(k)=H$
Set $\mathrm{H}=\mathrm{T}\left(\mathrm{j}_{1}\right) \quad, \quad \mathrm{T}\left(\mathrm{j}_{1}\right)=\mathrm{T}(\mathrm{k}) \quad, \quad \mathrm{T}(\mathrm{k})=\mathrm{H}$
Set $H=Y\left(j_{1}\right), \quad Y\left(j_{1}\right)=Y(k) \quad, Y(k)=H$
2 - End.

Computational Algorithm (2)

Purpose

To arrange arrays T and Y in the sense of increasing values of the array T.

Input Data

N values of $T(j)$ and $Y(j) ; j=1,2, \ldots, N$

Computational Sequence

$1-$ For $\mathrm{k}=1,2, \ldots, \mathrm{~N}-1$, do
Set $\mathrm{H}=\mathrm{T}(\mathrm{k}) \quad, \mathrm{j}_{1}=\mathrm{k}$
For $\mathrm{j}=\mathrm{k}, \mathrm{k}+1, \ldots, \mathrm{~N}$, do:
If $T(j) \geq H$ Next to j
Set $H=T(j), j_{1}=1$
Set $T\left(\mathrm{j}_{1}\right)=T(k) \quad, \quad T(k)=H$
Set $\mathrm{H}=\mathrm{Y}\left(\mathrm{j}_{1}\right) \quad, \quad \mathrm{Y}\left(\mathrm{j}_{1}\right)=\mathrm{Y}(\mathrm{k}), \mathrm{Y}(\mathrm{k})=\mathrm{H}$

2 - End.

Computational Algorithm (3)

Purpose

To determine H, R_{1}, and $I_{\min }$, where H is the minimum value of the array R, R_{1} its maximum value, and $I_{\min }$ is the order of H in the array.

Input Data

$$
N_{1} \text { values of } R(j) ; j=1,2, \ldots, N_{1} .
$$

Computational Sequence

$1-$ Set $H=R(1), j_{1}=1, R_{1}=R(1)$
2 - For $\mathrm{k}=1,2, \ldots, \mathrm{~N}_{1}$, do :

$$
\text { If } \mathrm{R}(\mathrm{~K})>\mathrm{H} \text { go to } 3
$$

$$
\text { Set } H=R(k), j_{1}=K
$$

3 - If $R(k)<R_{1}$ Next to K $\mathrm{R}_{1}=\mathrm{R}(\mathrm{k})$
$4-I_{\text {min }}=j_{1}$
5 - End.

Computational Algorithm (4)

Purpose

To determine an estimate of the fundamental period P_{o} of periodic phenomena for variable stars using the minimum polygonal line method for observed data, with:

1 - Sequential scanning of Equation (1), or
2 - Non linear scanning of Equation (2).

Input Data

$1-N=$ number of observed data (magnitudes, radial velocity, $O-C$ residuals, radio fluxes, etc.).
$2-T(j), Y(j) ; j=1,2, \ldots, N \equiv$ observations.
$3-P_{1}, P_{2}=$ range of values of the period that will be investigated.
$4-I T=$ positive integer, takes the value 1 or 2 such that if $I T=1$ the algorithm uses sequential scanning, while for $I T=2$ it uses non linear scanning.
$5-\alpha$ stands for s if $I T=1$, and for β if $I T=2$.

Computational Sequence

1 - Use computational algorithm 2 to arrange the arrays T and Y in the sense of increasing values of the T .
$2-$ If IT $=2$ go to step 17
3 - If $\alpha>\left(\mathrm{P}_{2}-\mathrm{P}_{2}\right) / 300$ go to step 5
4 - The value of α is too small for the given period range. Use larger value of α and go to step 3

5 - If $\alpha<\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$ go to step 7
6 - The value of α is too large for the given period range. Use smaller value of α and go to step 3

$$
\left.7-\mathrm{N}_{1}=1 \text { (Sequential scanning }\right)
$$

$8-\mathrm{P}_{3}\left(\mathrm{~N}_{1}\right)=\mathrm{P}_{1}+\alpha\left(\mathrm{N}_{1}-1\right)$
$9-$ If $\mathrm{P}_{3}\left(\mathrm{~N}_{1}\right)>\mathrm{P}_{2}$ go to step 27
$10-$ For $\mathrm{j}=1,2, \ldots, \mathrm{~N}$, do :

$$
\begin{aligned}
& \phi(\mathrm{j})=(\mathrm{T}(\mathrm{j})-\mathrm{T}(1)) / \mathrm{P}_{3}\left(\mathrm{~N}_{1}\right) \\
& \phi(\mathrm{j})=\phi(\mathrm{j})-[\phi(\mathrm{j})]
\end{aligned}
$$

11 - Use computational algorithm 1 to arrange the arrays ϕ, T, and Y in the sense of increasing the phase ϕ.
$12-\mathrm{R}\left(\mathrm{N}_{1}\right)=0$
$13-$ For $\mathrm{j}=1,2, \ldots, \mathrm{~N}-1$, do :

$$
R\left(N_{1}\right)=R\left(N_{1}\right)+\left\{[\phi(j)-\phi(j+1)]^{2}+[Y(j)-Y(j+1]\}^{1 / 2}\right.
$$

14 - Use computational algorithm 2 to arrange the arrays T() and Y() in the sense of increasing the values of the T.

15 - If $\mathrm{N}_{1} \geq 300$ go to step 27 (Too many iterations; the loop stops here)
$16-\mathrm{N}_{1}=\mathrm{N}_{1}+1$, go to step 8
$17-N_{1}=1$ (The non linear scanning)
$18-\mathrm{P}_{3}\left(\mathrm{~N}_{1}\right)=\mathrm{P}_{1}+\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)\left(1+\alpha-1 / \mathrm{N}_{1}\right)$
$19-$ If $\mathrm{P}_{3}\left(\mathrm{~N}_{1}\right)>\mathrm{P}_{2}$ go to step 27
$20-$ For $\mathrm{j}=1,2, \ldots, \mathrm{~N}$, do :

$$
\begin{aligned}
& \phi(\mathrm{j})=\left(\mathrm{T}(\mathrm{j})-\mathrm{T}(1) / \mathrm{P}_{3}\left(\mathrm{~N}_{1}\right)\right. \\
& \phi(\mathrm{j})=\phi(\mathrm{j})-[\phi(\mathrm{j})]
\end{aligned}
$$

21 - Use computational algorithm 1 to arrange the arrays $\phi(), \mathrm{T}()$ and Y() in the sense of increasing the values of the phase ϕ.

$$
22-\mathrm{R}\left(\mathrm{~N}_{1}\right)=0
$$

$23-$ For $\mathrm{j}=1,2, \ldots, \mathrm{~N}-1$, do :

$$
R\left(N_{1}\right)=R\left(N_{1}\right)+\left\{[\phi(j)-\phi(j+1)]^{2}+[Y(j)-Y(j+1)]^{2}\right\}^{1 / 2}
$$

24 - Use computational algorithm 2 to arrange the arrays T and Y in the sense of increasing values of the T .

25 - If $\mathrm{N}_{1} \geq 300$ go to step 27
$26-\mathrm{N}_{1}=\mathrm{N}_{1}+1$, go to step 18
27 - Use computational algorithm 3 to compute the minimum value H and the maximum value R_{1} of the array R , also to compute the order $\mathrm{I}_{\min }$ of the value H .
$28-\mathrm{P}_{\mathrm{o}}=\mathrm{P}_{3}\left(\mathrm{I}_{\text {min }}\right)$
29 - End.

Computational Algorithm (5)

Purpose

To compute approximate value of the period P.

Input Data

$$
m_{j}, t_{j} ; j=1,2,3, \ldots, N \text { and } P_{a}=[P]
$$

Computational Sequence

1 - From the list of observations, identify the maxima and minima.
2 - Determine the intervals between successive maxima, let their sum be A.
3 - Determine the number of cycles between the intervals of successive maxima, let their sum be S_{1}.

4 - Determine the intervals between successive minima, let their sum be B.
5 - Determine the number of cycles between the intervals of successive minima, let their sum be S_{2}.

6 - Compute an approximate value of the period P from :

$$
\mathrm{P}=(\mathrm{A}+\mathrm{B}) /\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) .
$$

7 - End.

Computational Algorithm (6)

Purpose

To compute the difference, $\varepsilon=O-C$, between the observed and calculated times of each maxima.

Input Data

1 - The observed values of $m_{j}, t_{j} ; j=1,2, \ldots, N$
2 - The period P.

Computational Sequence

1 - From the observed values determine the epoch E_{0} of the first maximum.
2 - Determine the observed date of maximum (O) and the corresponding number of the cycle X.

3 - Compute the calculated value of the maxima from $C=E_{o}+X P$.
4 - Compute ε, the difference between the observed and calculated times of each maximum from $\varepsilon=\mathrm{O}-\mathrm{C}$.

5 - End.

Computational Algorithm (7)

Purpose

To compute the coefficients a_{o} and a_{1} for the least squares fit of the relation $\varepsilon=a_{o}+a_{1} X$

Input Data

$$
e_{j}, X_{j} ; j=1,2, \ldots, n
$$

Computational Sequence

1 - Compute the sums

$$
T=\sum_{i=1}^{n} X_{i}, \quad S=\sum_{i=1}^{n} X_{i}^{2}, \quad B_{1}=\sum_{i=1}^{n} \varepsilon_{i}, \quad B_{2}=\sum_{i=1}^{n} \varepsilon_{i} X_{i}, \quad W=\sum_{i=1}^{n} \varepsilon_{i}^{2}
$$

2 - Compute Δ from $\Delta=\mathrm{nS}-\mathrm{T}^{2}$.
3 - Compute a_{o} and a_{1} from

$$
\mathrm{a}_{\mathrm{o}}=\left(\mathrm{B}_{1} \mathrm{~S}-\mathrm{B}_{2} \mathrm{~T}\right) / \Delta \quad, \quad \mathrm{a}_{1}=\left(\mathrm{B}_{2} \mathrm{n}-\mathrm{B}_{1} \mathrm{~T}\right) / \Delta
$$

4 - End.

Computational Algorithm (8)

Purpose

To compute the values of the period P and the epoch E_{o} of the first maximum.

Input Data

$$
P, E_{o}, \varepsilon_{j}, X_{j} \text { and To } \ell j=1,2, . ., n
$$

where $T o \ell$ is a given tolerance.

Computational Sequence

1 - Use algorithm 7 to compute a_{o} and a_{1}.
2 - If $\left(\left|\mathrm{a}_{\mathrm{o}}\right|\right.$ and $\left|\mathrm{a}_{1}\right|$, To $\left.\ell\right)$ go to step 6.
3 - Compute the improved values of P and E_{o} from

$$
\mathrm{P}=\mathrm{P}+\mathrm{a}_{1}, \quad \mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{o}}+\mathrm{a}_{\mathrm{o}} .
$$

4 - With this value of P , use algorithm 6 to compute new values of ε.
5 - Go to step 1.
6 - Consider the last two values of P as P_{1} and P_{2}, then use algorithm 4 to find the final improvement of the period P .

7 - End.

Computational Algorithm (9)

Purpose

To compute the phase ϕ of the light curve.

Input Data

$$
E_{o}, P, m_{j} \text { and } t_{j} ; j=1,2, \ldots, N .
$$

Computational Sequence

1 - Compute $\forall j=1,2, . ., N, Z_{j}$ from $Z_{j}=\left(t_{j}-E_{o}\right) / P$.
2 - Compute the phases $\Phi_{\mathrm{j}} ; \mathrm{j}=1,2, \ldots, \mathrm{~N}$ from $\Phi_{\mathrm{j}}=\mathrm{Z}_{\mathrm{j}}-\left[\mathrm{Z}_{\mathrm{j}}\right]$
3 - End.

Some Notes

a) It is recommended to plot the polygonal length against the period to:

1. Allow us to identify the presence of secondary minima.
2. Verify that the selected value of the period corresponds to an absolute minimum of $R_{k} ; k=1,2, . ., N-1$.
b) The precision of the algorithm depending on scanning value α.
c) In order to increase the precision, the computation may be carried out in two different steps: first, run Algorithm 4 with $I T=1$ with α not too large \{for example $\left.\left(P_{2}-P_{1}\right) / 200\right\}$ and then run the algorithm with $I T=2$ with P_{2} very close to, but greater than, the first result.

Numerical Applications and Results

The visual and photo-visual observations of δ Cephei ${ }^{[5]}$ are listed in Table 1. To construct the light (luminosity) curve of δ Cephei, the following steps are to be performed.

Table 1. Visual and photo-visual observations of δ Cephei, obtained between September and December, 1979 by E. Schweitzer.

Date	Time	Julian day $2444000+$	Comparison	m_{V}	Date	Time	Julian day $2444000+$	Comparison	m_{V}
Sept. 16	19.12	133.3007	a 6 v lb	4.2	Oct. 22	18.32	169.2722	a3 v 4b	3.9
16	23.52	133.4944	a 6 v lb	4.2	22	22.15	169.4271	a3 v 4b	3.9
17	19.09	134.2979	a 6 v lb	4.2	23	18.08	170.2556	a 5 v 2 b	4.1
17	22.55	134.4449	a 6 v lb	4.2	24	17.32	171.2305	v b	4.3
18	19.06	135.2958	a 2 v 5 b	3.8	24	23.28	171.4778	b1 v	4.4
18	21.20	135.3889	v 2 a	3.4	25	17.42	172.2375	a4 v 3b	4.0
18	22.51	135.4521	$\mathrm{a} 1 \times 6 \mathrm{~b}$	3.7	25	22.55	172.4549	a5 v 3b	4.1
24	19.41	141.3222	v a	3.6	26	17.22	173.2236	v a	3.6
25	19.45	142.3230	a 2 v 4 b	3.8	26	23.02	173.4597	v a	3.6
26	18.31	143.2715	a 2 v 5 b	3.8	Nov. 1	17.23	179.2312	v a	3.6
26	20.56	143.3722	a3 v 3 b	3.9	2	18.05	180.2535	a3 v 4b	3.9
26	23.48	143.4917	$\mathrm{a} 4 \times 2 \mathrm{~b}$	4.0	4	19.43	182.3216	v 1 b	4.4
27	18.30	144.2708	a 5 v b	4.2	4	22.00	182.4167	$v \mathrm{~b}$	4.3
27	23.57	144.4979	b1 v	4.4	5	17.02	183.2097	a4 v 3b	4.0
28	18.39	145.2771	a 4 v 3 b	4.0	9	18.11	187.2576	$\mathrm{a} 5 \times 1 \mathrm{~b}$	4.2
28	19.22	145.3070	a 4 v 3 b	4.0	9	22.26	187.4348	v b	4.3
29	19.12	146.3000	v a	3.6	11	16.55	189.2049	v a	3.6
30	18.06	147.2535	alv 5 b	3.7	12	00.33	189.5229	vl4a	3.5
30	20.21	147.3479	al v 5 b	3.7	14	21.53	192.4118	v b	4.3
Oct. 1	01.59	147.5771	a 2 v 5 b	3.8	16	19.25	194.3091	a 2 v 5 b	3.8
1	18.20	148.2639	a 3 v 4b	3.9	17	01.00	194.5417	v a	3.6
1	21.17	148.3868	a 2 v 4 b	$\underline{3.8}$	17	16.46	195.1987	$\mathrm{a} \times 6 \mathrm{~b}$	3.7
2	01.46	148.5737	$\mathrm{a} 4 \times 3 \mathrm{~b}$	4.0	22	16.45	200.1980	v a	3.6
2	18.03	149.2521	$\mathrm{a} 5 \times 2 \mathrm{~b}$	4.1	28	20.50	206.3680	a3 v 4b	3.9
2	21.51	149.4104	$\mathrm{a} 4 \times 3 \mathrm{~b}$	4.0	30	17.05	208.2118	$\mathrm{a} 5 \times 1 \mathrm{~b}$	4.2
2	22.04	149.4195	$\mathrm{a} 5 \times 1 \mathrm{~b}$	4.2	Dec. 2	16.50	210.2014	a 4 v 3 b	4.0
3	17.55	150.2465	b1 v	4.4	2	23.00	210.4583	a 2 v 5 b	3.8
3	20.18	150.3458	$v \mathrm{~b}$	$\underline{4.3}$	3	17.00	211.2083	v 1a	3.5
6	17.55	153.2465	a3 v 4b	3.9	3	22.30	211.4375	al $\vee 5$ b	3.7
7	18.50	154.2847	a3 v 4b	3.9	4	17.42	212.2375	$\mathrm{a} 4 \times 3 \mathrm{~b}$	4.0
8	18.35	155.2743	vb	4.3	4	21.55	212.4132	$\mathrm{a} 4 \times 3 \mathrm{~b}$	4.0
9	18.46	156.2830	a3 v 4b	3.9	7	16.40	215.1945	a 5 v 2 b	4.1
10	18.34	157.2736	v a	3.6	7	21.33	215.3979	a 5 v 2 b	4.1
12	17.44	159.2389	a3 v 4b	3.9	11	16.35	219.1910	a 5 v 2 b	4.1
15	17.23	162.2243	al $\vee 5$ b	3.7	12	22.02	220.4181	v b	4.3
18	18.42	165.2792	a 5 v 2 b	4.1	14	16.16	222.1778	a 2 v 5 b	3.8
18	22.00	165.4167	a 5 v lb	4.2	16	17.23	224.2243	a 5 v 2 b	4.1

Table 1. Contd.

Date	Time	Julian day $2444000+$	Comparison	m_{v}	Date	Time	Julian day $2444000+$	Comparison	m_{v}
19	18.05	166.2535	v b	4.3	18	17.00	226.2083	a 2 v 5 b	3.8
19	22.42	166.4459	b 1 v	4.4	23	18.42	231.2792	a 5 v 2 b	4.1
20	17.24	167.2250	a 3 v 4 b	3.9	25	21.21	235.3896	a 5 v 2 b	4.1
20	21.20	167.3889	al v 6 b	3.7	30	17.48	238.2417	a 2 v 5 b	3.8
21	19.17	168.3035	v a	3.6	31	23.18	239.4708	a 3 v 4 b	3.9
21	23.05	168.4618	v a	3.6					

Note: Photo-visual observations are underlined.

1) Find an approximate value of the period P by using Algorithm 5, with m_{j} and t_{j} as given in Table 2 (and shown in Fig. 2) and $P_{a}=5$ days. The output of the algorithm is listed in Table 3 (and shown in Fig. 3). It follows from Table 3 that

$$
P+(A+B) /\left(S_{1}+S_{2}\right)=(69.8861+47.9139) /(13+9)
$$

so that the approximate value of the period is $P=5.354517$ days
Table 2. Data for the light curve of a variable star.

Day	m	Day	m	Day	m
0	5.45	30	5.31	60	4.50
5	5.10	35	5.40	65	4.79
10	4.50	40	5.47	70	5.02
15	4.79	45	5.50	75	5.18
20	5.02	50	5.45	80	5.31
25	5.18	55	5.10		

Fig. 2. Data for the light curve of a variable star.

Table 3. Approximate value of the period.

Maxima			Minima		
Julian date of observations $2444000+$	Length of the cycle (days)	Number of cycles	Julian date of observations $2444000+$	Length of the cycle (days)	Number of cycles
141.3222	4.9778	1	144.4979	5.7983	1
146.3000	10.9736	2	150.2962	4.9781	1
157.2736	5.0597	1	155.2743	11.0754	2
162.3333	6.0493	1	166.3497	5.0045	1
168.3826	4.9590	1	171.3542	11.0150	2
173.3416	5.8896	1	182.3692	5.0656	1
179.2312	10.1327	2	187.4348	4.9764	1
189.3639	5.1778	1	192.4118		
194.5417	4.6563	1			
200.1980	11.0103	2			
211.2083					

$A=69.8861 \quad S_{1}=3 \quad B=47.9139 \quad S_{2}=9$
2) Find the difference, $\varepsilon=O-C$, between the observed and calculated times of each maximum by using Algorithm 6, with $P=5.354517^{\text {d }}$ and $E_{o}=$ 2444141.3222. The output is listed in Table 4 (and shown in Fig. 4).

FIG. 3. Approximate period of δ Cephei.

Table 4. The differences $\varepsilon=O-C$.

X	Observed date of maximum (O) $2444000+$	Calculated date of maximum (C) $2444000+$	$\varepsilon=O-C$
0	141.3222	141.322200	0
1	146.3000	146.676717	-0.376717
3	157.2736	157.385751	-0.112151
4	162.3333	162.740268	-0.406968
5	168.3826	168.094785	+0.287815
6	173.3416	173.449302	-0.107702
7	179.2312	178.803819	-0.427381
9	189.3639	189.512853	-0.148953
10	194.5417	194.867370	-0.325670
11	200.1980	200.221887	-0.023887
13	211.2083	210.930921	+0.277379

3) Find the improved values of the period P and the epoch E_{o} of the first maximum by using Algorithm 8 as follows:
a) With $P=5.354517^{\mathrm{d}} ; E_{o}=2444141.3222 ; \varepsilon_{j}, X_{j} ; j=1,2, \ldots, 11$ given from Table 4, and To $=10^{-5}$, Algorithm 7 gives $a_{o}=-0.168224, a_{1}=$ +0.019435 .
ε

Fig. 4. The differences $\varepsilon=O-C$.
b) Since $\left|a_{o}\right|$ and $\left|a_{1}\right|>T o \ell$, then

$$
P=P+a_{1}=5.373952, E_{o}=E_{o}+a_{o}=2444141.153976
$$

c) With this value of P, Algorithm 6 gives new values of ε which are listed in Table 5 (and shown in Fig. 4).

Table 5. New values of differences $\varepsilon=O-C$.

X	Observed date of maximum (O) $2444000+$	Calculated date of maximum (C) $2444000+$	$\varepsilon=O-C$
0	141.3222	141.1539	0.1682
1	146.3000	146.5279	-0.2279
3	157.2736	157.2758	-0.0022
4	162.3333	162.6498	-0.3165
5	168.3826	168.0237	0.3589
6	173.3416	173.3977	-0.0561
7	179.2312	178.7716	-0.4596
9	189.3639	189.5195	-0.1556
10	194.5417	194.8935	-0.3518
11	200.1980	200.2674	-0.0694
13	211.2083	211.0154	+0.1929

d) With the $X^{, s}$ and $\varepsilon^{, s}$ from Table 5, Algorithm 7 gives

$$
a_{o}=4.271397 \times 10^{-11} \quad, \quad a_{1}=-0.6075956 \times 10^{-14}
$$

e) Since $\left|a_{o}\right|$ and $\left|a_{1}\right|<T o \ell$, then consider P_{1} and P_{2} as

$$
P_{1}=5.354517^{\mathrm{d}}, P_{2}=5.3739517^{\mathrm{d}}
$$

as the input values of Algorithm 4, and we get for the period the final value

$$
P=5.372017^{\mathrm{d}}=5^{\mathrm{d}} 8^{\mathrm{h}} 55^{\mathrm{m}} 42^{\mathrm{s}} .27
$$

Table 6 gives values of the periods and the polygonal length. From this table we see that the minimum value of the polygonal length is 7.987093127233910 which corresponds to the period $P=5.372017^{\mathrm{d}}$, which confirmed the above result of the final period. Values of the color, luminosity, mass, and radius of the star δ Cephei can therefore be computed from the well-known relation ${ }^{[6-9]}$.
4) Compute the phases using Algorithm 9 and we get Table 7 between phases ϕ and the apparent magnitudes m. Finally, the required luminosity curve of δ Cephei is given in Fig. 5; the SPLINE procedure is used to obtain the best fit to the light curve.

In concluding this paper, an accurate algorithm has been constructed for period determination of periodic phenomenon. The algorithm was applied for δ Cephei in order to determine its period and mean light curve.

Table 6. Periods against polygonal length.

P	R	P	R
9.3539949	7.98709312723391	5.3640170	9.14592725084059
5.3545170	9.14204661547270	5.3645170	9.14508997310208
5.3550170	9.14504987123653	5.3650170	9.14185571943845
5.3555170	9.14927487739509	5.3655170	9.33878846355305
5.3560170	9.34374886562902	5.3660170	9.33971323162058
5.3565170	9.16133834392907	5.3665170	9.34093136437293
5.3570170	9.14714647145330	5.3670170	9.15619710929421
5.3575170	9.14766210044817	5.3675170	8.74177743519474
5.3580170	8.96811903601509	5.3680170	8.74111067783573
5.3585170	8.96543689697828	5.3685170	8.83711771969924
5.3590170	8.96358932988842	5.3690170	8.83778109592244
5.3595170	8.96678962938762	5.3695170	8.83923796704616
5.3600170	9.15885864489083	5.3700170	8.34926856886708
5.3605170	9.15792073823789	5.3705170	8.35123335639887
5.3610170	9.35399485957666	5.3710170	8.36753964520533
5.3615170	9.35373447388736	5.3715170	8.37014677692709
5.3620170	9.35035398911963	5.3720170	7.98709312723391
5.3625170	9.16164923116921	5.3725170	7.98951129474225
5.3630170	9.17408883830942	5.3730170	8.19236371595891
5.3635170	9.14702614916558	5.3735170	8.16332238140989

Table 7. The phases and apparent magnitudes for δ Cephei.

ϕ	m	ϕ	m	ϕ	m
-.4619	4.2	0.6285	4.3	0.9947	3.6
-.4258	4.2	0.8163	3.9	0.0039	3.5
-.2763	4.2	0.0007	3.6	0.5416	4.3
-.2489	4.2	0.3665	3.9	0.8948	3.8
-0.905	3.8	0.9222	3.7	0.9381	3.6
-.0732	3.4	0.9425	3.5	0.0604	3.7
-.0614	3.7	0.4909	4.1	0.9910	3.6
0.0313	3.6	0.5165	4.2	0.1396	3.9
0.2176	3.8	0.6723	4.3	0.4828	4.2
0.3942	3.8	0.7081	4.4	0.8532	4.0
0.4129	3.9	0.8531	3.9	0.9010	3.8
0.4352	4.0	0.8836	3.7	0.0406	3.5
0.5802	4.2	0.0539	3.6	0.0833	3.7
0.6225	4.4	0.0833	3.6	0.2322	4.0
0.7675	4.0	0.2342	3.9	0.2649	4.0

Table 7. Cont.

ϕ	m	ϕ	m	ϕ	m
0.7731	4.0	0.2630	3.9	0.7826	4.1
0.9579	3.6	0.4173	4.1	0.8205	4.1
0.1354	3.7	0.5987	4.3	0.5266	4.1
0.1530	3.7	0.6448	4.4	0.7550	4.3
0.1957	3.8	0.7862	4.0	0.0826	3.8
0.3235	3.5	0.8267	4.1	0.4635	4.1
0.3464	3.8	0.9698	3.6	0.8328	3.8
0.3812	4.0	0.0137	3.6	0.7768	4.1
0.5075	4.1	0.0880	3.6	0.5419	4.1
0.5369	4.0	0.2784	3.9	0.0729	3.8
0.5386	4.2	0.6633	4.4	0.3016	3.9
0.6926	4.4	0.6810	4.3		
0.7111	4.3	0.8287	4.0		
0.2510	3.9	0.5822	4.2		
0.4443	3.9	0.6152	4.3		

Fig. 5. Luminosity curve of δ Cephei.

References

[1] Mihalas, D. and Binney, J., Galactic Astronomy, Structure and Kinematics, W.H. Freeman and Company, San Francisco (1981).
[2] Carroll, B.W. and Ostlie, D.A., An Introduction to Modern Astrophysics, Addison-Wesley Publishing Company (1996).
[3] El-Khateeb, M.M., Ph.D. Theses, Faculty of Science, Helwan University, Egypt (1999).
[4] Ghedini, S., Software for Photometric Astronomy, Willmann-Bell, Inc., Virginia, USA (1982).
[5] Acker, A. and Jaschek, C., Astronomical Methods and Calculations, John Wiley and Sons, New York (1988).
[6] Kraft, R.P., Ap. J., 133: 9 (1961).
[7] Sandage, A.R., Ap. J., 127: 513 (1958).
[8] Fernie, J.D., Ap. J., 133: 64 (1961).
[9] Petit, M., Variable Stars, John Wiley \& Sons, New York (1987).

برنامج حسابي لتحليل دورة التغيير في النجوم القيفاوية وتطبيقاته على منحنيات الاستضاءة لهذه النجوم

عدنان عبــــد الله جوهر جي
قسم العلوم الفلكية - كلية العلوم - جامعة الملك عبد العزيز جـــة -المملكة العربية السعودية
المستـخلص . تم تصمـيم برنامج حسابي دقيق لتعيين دورة التـغير
للظو اهر الدورية على أفضل واجهة مُرتبة حتى يُعططى أصغر قيمة لأفضل
حصلنا على المنخنى الضوئي المتوسط لهذا النجم .

