Estimation of the Scale Parameter of the Half Logistic Distribution by Blom's Method

A.A. Jamjoom *
Department of Mathematics, Girls College of Education, Jeddah, Saudi Arabia

Abstract

Blom's method is used to obtain NBLUE of the scale parameter of the half logistic distribution when the location parameter is known ($\mu=0$), based on complete sample. A comparison is made with estimators obtained by four methods: the least square method of obtaining best linear unbiased estimators (BLUE's), the method of maximum likelihood estimators (MLE's), the method of approximate maximum likelihood estimators (AMLE's) and (BLUE's) based on two optimally selected order statistics. An illustrative example using life time data is presented for the distribution.

KeyWords: Half logistic distribution, Blom estimation method, location and scale parameters, order statistics.

1. Introduction

In 1956 and 1958 Blom ${ }^{[1,2]}$ developed a simplified method of estimation of the location and scale parameters of any arbitrary distribution. These estimators are called "nearly best linear unbiased estimators (NBLUEs). They require only the exact values of the means of order statistic and use the asymptotic approximations for the variances and covariance of order statistics. Blom ${ }^{[2]}$ applied his method for six distributions; rectangular, normal, triangular, right triangular, exponential, and extreme-value distribution. Several applications of Blom method have been given in the literature starting with Sarhan and Greenberg 1962 ${ }^{[3]}$. They summarized the method and applied it, in details, for the extreme value distribution. In 1987, Ragab and Green ${ }^{[4]}$ estimated the parameters of the logistic distribution. In 1991, Balakrishnan and Cohen ${ }^{[5]}$ summarized Blom method and estimated the parameters of the normal distribution. In 1995, Jam-

[^0]joom ${ }^{[6]}$ estimated the parameters of second kind Pareto distribution, and in 2000, Al-Ghufaily ${ }^{[7]}$ estimated one shape parameter of Burr type XII distribution. All results seem to warrant the conclusion that Blom approximative method is highly efficient, easy to apply and can be used for both complete and censored samples. The simplicity of this method came from the fact that the means (but not the covariances) of the ordered variables are known only.

In section 2 below, we presented Balakrishnan and Cohen ${ }^{[5]}$ summary of Blom's for complete and censored samples with some details of Blom ${ }^{[2]}$ for the special case when a single parameter is unknown.

Section 3 presents application of Blom method to obtain NBLUE of the scale parameter of the half-logistic distribution when the location parameter is μ is known ($\mu=0$), and supported by a numerical example. Comparison of the results is made with four different methods is given in Table 2.

2. Basic Formulae of NBLUEs

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample of size n from any population with p.d.f. $f(x)$ c.d.f. $F(x)$, and let $x_{1: n} \leq x_{2: n} \leq \ldots . \leq x_{n: n}$ be the order statistics obtained from this random sample. Let

$$
Z_{i}=\frac{X_{i}-\mu}{\sigma} \quad 1 \leq i \leq n
$$

be the standardized population random variable. Clearly, the distribution of Z is free of the parameters (μ and σ) and hence, the means $a_{i: n}, i=1,2,3, \ldots, n$ and the covariances of the order statistics $Z_{i: n}, i=1,2,3, \ldots, n$, from the Z population, are free of them as well. Moreover, in view of the David-Johnson approximation (see Blom ${ }^{[2]}$), it can be shown that

$$
\begin{equation*}
\operatorname{cov}\left(Z_{i: n}, Z_{j: n}\right)=\frac{a_{i} b_{j}}{(n+2) A_{i} A_{j}}+O\left(\frac{1}{n^{2}}\right), \quad 1 \leq i \leq j \leq n \tag{2.1}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
a_{i}=\frac{i}{n+1} \\
b_{i}=1-a_{i} \tag{2.3}\\
A_{i}=f\left(F^{-1}\left(a_{1}\right)\right) \quad, \text { for } \quad i=1,2, \ldots, n
\end{array}\right\}
$$

Blom defined what he called the weighted differences between consecutive transformed Beta Variables.

$$
\begin{equation*}
Z_{i: n}^{*}=A_{i+1} Z_{i+1: n}-A_{i} Z_{i: n} \quad, \quad 0 \leq i \leq n \tag{2.4}
\end{equation*}
$$

where the weights A_{i} defined in (2.3) are such that $A_{0}=A_{n+1}=0$.

Then

$$
\begin{equation*}
E\left(Z_{i: n}^{*}\right)=A_{i+1} \alpha_{i+1: n}-A_{i} \alpha_{i: n} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{i: n}=E\left(Z_{i: n}\right) \tag{2.6}\\
& \operatorname{var}\left(Z_{i: n}^{*}\right) \cong \frac{n}{(n+1)^{2}(n+2)} \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{cov}\left(Z_{i: n}^{*}, Z_{j: n}^{*}\right) \cong \frac{-1}{(n+1)^{2}(n+2)} \quad, \quad 0 \leq i<j \leq n \tag{2.8}
\end{equation*}
$$

independently of the parent distribution F.
Suppose that the parameter to be estimated is in the general form

$$
\begin{equation*}
\delta=L_{1} \mu+L_{2} \sigma \tag{2.9}
\end{equation*}
$$

Where L_{1}, L_{2} are two given quantities. For $L_{1}=1, L_{2}=0$, and $L_{1}=0, L_{2}=1$, the parameter is specialized to μ and σ respectively.

The location parameter μ and the scale parameter σ are to be estimated by means of linear expressions of the form

$$
\begin{equation*}
\delta_{*}=\sum_{i=1}^{n} Q_{i} X_{\dot{i}: n}=\sum_{i=1}^{n} Q_{i}\left(\mu+\sigma Z_{i: n}\right) \tag{2.10}
\end{equation*}
$$

From (2.4) we can write

$$
\begin{equation*}
A_{i} Z_{i: n}=\sum_{j=0}^{i-1} Z_{j: n}^{*} \quad, \quad 1 \leq i \leq n \tag{2.11}
\end{equation*}
$$

By writing the coefficients Q_{i} in (2.10) as

$$
\begin{equation*}
Q_{i}=A_{i}\left(R_{i}-R_{i-1}\right) \quad, \quad 1 \leq i \leq \mathrm{n} \tag{2.12}
\end{equation*}
$$

and by using (2.11), the linear expression can be written as

$$
\begin{align*}
\delta_{*} & =\sum_{i=1}^{n} A_{i}\left(R_{i}-R_{i-1}\right)\left(\mu+\sigma Z_{i: n}\right) \\
& =\mu \sum_{i=1}^{n} A_{i}\left(R_{i}-R_{i-1}\right)+\sigma \sum_{i=1}^{n}\left(R_{i}-R_{i-1}\right) \sum_{j=0}^{i-1} Z_{j: n}^{*} \tag{2.13}\\
& =\sum_{i=0}^{n} R_{i}\left\{\mu\left(A_{i}-A_{i+1}\right)-\sigma Z_{i: n}^{*}\right\}
\end{align*}
$$

From (2.13) we get the expected value δ_{*} by using (2.5) to be

$$
\begin{align*}
E\left(\delta_{*}\right) & =\mu \sum_{i=0}^{n} R_{i}\left(A_{i}-A_{i+1}\right)-\sigma \sum_{i=0}^{n} R_{i}\left(A_{i+1} \alpha_{i+1: n}-A_{i} \alpha_{i: n}\right) \tag{2.14}\\
& =\mu \sum_{i=0}^{n} R_{i} S_{1 i}+\sigma \sum_{i=0}^{n} R_{i} S_{2 i}
\end{align*}
$$

where

$$
\begin{align*}
& S_{1 i}=A_{i}-A_{i+1} \tag{2.15}\\
& S_{2 i}=A_{i} \alpha_{i: n}-A_{i+1} \alpha_{i+1: n} \tag{2.16}
\end{align*}
$$

Furthermore, from (2.13) we obtain the variance of δ_{*} by using (2.7) and (2.8) to be

$$
\begin{align*}
& \operatorname{Var}\left(\delta_{*}\right)=\sigma^{2}\left[\sum_{i=0}^{n} R_{i}^{2} \operatorname{Var}\left(Z_{i: n}^{*}\right)+\sum_{\substack{i=0 \\
i \neq j}}^{n} \sum_{j=0}^{n} R_{i} R_{j} \operatorname{Cov}\left(Z_{i: n}^{*}, Z_{j: n}^{*}\right)\right] \\
& \begin{aligned}
\operatorname{Var}\left(\delta_{*}\right) & \cong \frac{\sigma^{2}}{(n+1)^{2}(n+2)}\left[n \sum_{i=0}^{n} R_{i}^{2}-\sum_{i=0}^{n} \sum_{j=0}^{n} R_{i} R_{j}\right] \\
& =\frac{\sigma^{2}}{(n+1)(n+2)} \sum_{i=0}^{n}\left(R_{i}-\bar{R}\right)^{2}
\end{aligned} \tag{2.17}
\end{align*}
$$

Where

$$
\begin{equation*}
\bar{R}=\sum_{i=0}^{n} \frac{R_{i}}{(n+1)} \tag{2.18}
\end{equation*}
$$

The variance of δ_{*} in (2.17) is proportional to:

$$
\begin{equation*}
Z=\sum_{i=0}^{n}\left(R_{i}-\bar{R}\right)^{2} \tag{2.19}
\end{equation*}
$$

That is minimizing Z is equivalent to minimizing the variance of the estimator δ_{*}. Now Z in (2.19) is minimized with respect to the R_{i} 's subject, to the two side conditions (constraints)

$$
\begin{equation*}
\sum_{i=0}^{n} R_{i} S_{1 i}=L_{1} \quad, \quad \sum_{i=0}^{n} R_{i} S_{2 i}=L_{2} \tag{2.20}
\end{equation*}
$$

or they can be put together as

$$
\begin{equation*}
\sum_{i=0}^{n} R_{i} S_{r i}=L_{r} \quad, \quad r=1,2 \tag{2.21}
\end{equation*}
$$

Using the method of Lagrange multiplier ${ }^{[8]}$. The two constraints (2.20) should be written as:

$$
\begin{equation*}
g_{1}(R)=\sum_{i=0}^{n} R_{i} S_{1 i}-L_{1}=0 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(R)=\sum_{i=0}^{n} R_{i} S_{2 i}-L_{2}=0 \tag{2.23}
\end{equation*}
$$

If Z in (2.19) has a minimum subject to these constraints (2.20), then the following condition must be satisfied for some real numbers λ_{1} and λ_{2}.

$$
\begin{equation*}
\frac{d Z}{d R}=\lambda_{1} \frac{d g_{1}(R)}{d R}+\lambda_{2} \frac{d g_{2}(R)}{d R} \tag{2.24}
\end{equation*}
$$

where the numbers λ_{1} and λ_{2} are called Lagrange multipliers. Differentiating (2.19) and the conditions (2.22), (2.23) with respect to R_{i} and substituting the results in (2.24) we get the solution of the minimum value problem in terms of two Lagrange multipliers as:

$$
\begin{equation*}
2 \sum_{i=0}^{n}\left(R_{i}-\bar{R}\right)=\lambda_{1} \sum S_{1 i}+\lambda_{2} \sum S_{2 i} \tag{2.25}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
R_{i}-\bar{R}=\lambda_{1} S_{1 i}+\lambda_{2} S_{2 i} \tag{2.26}
\end{equation*}
$$

The determination of λ_{1} and λ_{2} is made in the traditional way. Multiplying (2.26) first by $S_{1 i}$ and adding from 0 to n, second by $S_{2 i}$ and again adding from 0 to n, taking into consideration that

$$
\begin{equation*}
\sum_{i=0}^{n} S_{r i}=0 \quad r=1,2 \tag{2.27}
\end{equation*}
$$

and the two constraints (2.22), (2.23) we get the system equations
where
and

$$
\left.\left.\begin{array}{l}
\lambda_{1} T_{11}+\lambda_{2} T_{12}=L_{1} \tag{2.28}\\
\lambda_{1} T_{21}+\lambda_{2} T_{22}=L_{1}
\end{array}\right\}\right\}
$$

This system (2.28) can be put in matrix from

$$
\begin{equation*}
\underline{T} \underline{A}=\underline{L} \tag{2.30}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(T_{r s}\right)_{2 \times 2} & =\left[\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right] \\
A & =\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right] \quad \text { and } \quad L=\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right]
\end{aligned}
$$

The solution of the system (2.30) gives the Lagragian multipliers λ_{1} and λ_{2} given by

$$
\begin{equation*}
\lambda_{1}=\frac{1}{T_{11} T_{22}-T_{12}^{2}}\left(T_{22} L_{1}-T_{12} L_{2}\right) \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{2}=\frac{1}{T_{11} T_{22}-T_{12}^{2}}\left(T_{11} L_{2}-T_{12} L_{1}\right) \tag{2.32}
\end{equation*}
$$

here

$$
\begin{equation*}
T_{i j}=\sum_{k=0}^{n} S_{i K} S_{j K} \quad, \quad 1 \leq i \leq j \leq 2 \quad i, j \in\{1,2\} \tag{2.33}
\end{equation*}
$$

With $R_{i s}$ as determined in (2.26), δ_{*} in (2.16) is the nearly best linear unbiased estimator of $\delta=L_{1}, \mu+L_{2} \sigma$

From (2.10) we then have

$$
\begin{align*}
& \delta_{*}=\sum_{i=1}^{n} A_{i}\left(R_{i}-R_{i-1}\right) X_{i: n} \\
& \delta_{*}=\sum_{i=1}^{n} A_{i}\left\{\lambda_{1}\left(S_{1 i}-S_{1, i-1}\right)+\lambda_{2}\left(S_{2 i}-S_{2, i-1}\right)\right\} X_{i: n} \tag{2.34}
\end{align*}
$$

where λ_{1} and λ_{2} are as given in (2.31) and (2.32) respectively.
In particular, by setting $L_{1}=1, L_{2}=0$ and $L_{1}=0, L_{2}=1$, we obtain the unbiased nearly best linear estimators of μ and σ as

$$
\begin{equation*}
\mu^{*}=\sum_{i=1}^{n} Q_{1 i} X_{i: n} \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{*}=\sum_{i=1}^{n} Q_{2 i} X_{\dot{i}: n} \tag{2.36}
\end{equation*}
$$

Where the coefficients $Q_{1 i}$ and $Q_{2 i}$ are given by

$$
\begin{align*}
& Q_{1 i}=\frac{A_{i}}{T_{11} T_{22}-T_{12}^{2}}\left(T_{22}\left(S_{1 i}-S_{1, i-1}\right)-T_{12}\left(S_{2 i}-S_{2, i-1}\right)\right) \tag{2.37}\\
& Q_{2 i}=\frac{A_{i}}{T_{11} T_{22}-T_{12}^{2}}\left(T_{11}\left(S_{2 i}-S_{2, i-1}\right)-T_{12}\left(S_{1 i}-S_{1, i-1}\right)\right) \tag{2.38}
\end{align*}
$$

Moreover, we obtain the variances and covariances of the estimators μ_{*} and σ_{*} from (2.17) to be

$$
\begin{align*}
\operatorname{var}\left(\mu^{*}\right) & \cong \frac{\sigma^{2}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{22}^{2}\right)^{2}} \sum_{i=0}^{n}\left(T_{22} S_{1 i}-T_{12} S_{2 i}\right)^{2} \\
& \cong \frac{\sigma^{2}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{12}^{2}\right)^{2}}\left(T_{22}^{2} T_{11}-T_{12}^{2} T_{22}\right) \\
& \cong \frac{\sigma^{2} T_{22}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{12}^{2}\right)} \tag{2.39}\\
\operatorname{var}\left(\sigma^{*}\right) & \cong \frac{\sigma^{2}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{12}^{2}\right)^{2}} \sum_{i=0}^{n}\left(T_{11} S_{2 i}-T_{12} S_{1 i}\right)^{2} \\
& \cong \frac{\sigma^{2}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{12}^{2}\right)^{2}}\left(T_{11}^{2} T_{22}-T_{12}^{2} T_{11}\right) \\
& \cong \frac{\sigma^{2} T_{11}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{12}^{2}\right)} \tag{2.40}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left(\mu^{*}, \sigma^{*}\right) \cong \frac{\sigma^{2} T_{12}}{(n+1)(n+2)\left(T_{11} T_{22}-T_{22}^{2}\right)} \tag{2.41}
\end{equation*}
$$

In order to find numerical values of the coefficients in Blom method of estimation, it is necessary to follow the following steps as Blom ${ }^{[2]}$ put it.

Step (1) Calculate the means of the standardized ordered variable $\alpha_{i: n}=E$ ($Z_{i: n}$)

Step (2) Compute the weights A_{i} in (2.3)
Step (3) Compute $A_{i} E\left(Z_{i}\right)$
Step (4) Compute $S_{1 i}$ and $S_{2 i}$ according to (2.15) and (2.16)
Step (5) Compute the elements $T_{r s}$ of T defined by (2.29)

Step (6) Insert the resulting numerical values in (2.37) and (2.38), then substitute in (2.35) and (2.36) to get the unbiased nearly best estimate μ^{*} and σ^{*}

Step (7) If the variances of μ^{*} and σ^{*} are required, the approximate expressions (2.39) and (2.40) are then used

As Blom pointed out that the method could be used both when the frequency function is continuous and when it is discrete Blom (1958) ${ }^{[2]}$. It is also used to construct unbiased nearly best estimates even when only one parameter μ and σ is unknown, and can easily be adapted to censored data.

2.a Censored Samples

When the samples are Type II censored with r smallest and s largest observations are missing, the estimation of μ and σ should then be based upon the observations $Z_{r+1}, Z_{r+2}, \ldots, Z_{n-s}$.

The formulae of μ^{*} and σ^{*} in (2.35) and (2.36) and their variances and covariance in (2.39) through (2.41) continue to hold with $S_{1 i}$ and $S_{2 i}$ replaced by $S_{1 i}^{*}$ and $S_{2 i}^{*}$ respectively, where

$$
S_{1 i}^{*}=\left\{\begin{array}{ll}
-\frac{1}{r+1} A_{r+1} & , \tag{2.42}\\
0 \leq i \leq r \\
S_{1 i}=A_{i}-A_{i+1} & , \\
\frac{1}{(s+1)} A_{n-s} & n+1 \leq i \leq n-s-1
\end{array}\right\}
$$

and

$$
S_{2 i}^{*}=\left\{\begin{array}{ll}
-\frac{1}{r+1} A_{r+1} \alpha_{r+1: n} & 0 \leq i \leq r \tag{2.43}\\
S_{2 i}=A_{i} \alpha_{i: n}-A_{i+1} \alpha_{i+1: n}, & r+1 \leq i \leq n-s-1 \\
\frac{1}{(s+1)} A_{n-s} \alpha_{n-s: n} & n-s \leq i \leq n
\end{array}\right\}
$$

In this case the unbiased nearly best estimator δ_{*} in (2.34) becomes

$$
\begin{equation*}
\delta_{*}=\sum_{i=r+1}^{n-s} A_{i}\left\{\lambda_{1}\left(S_{1 i}^{*}-S_{1, i-1}\right)+\lambda_{2}\left(S_{2 i}^{*}-S_{2, i-1}^{*}\right)\right\} X_{i: n} \tag{2.44}
\end{equation*}
$$

where λ_{1} and λ_{2} are as given in (2.31) and (2.32), respectively. Then the estimators μ^{*} and σ^{*} in (2.35), (2.36) become

$$
\begin{equation*}
\mu^{*}=\sum_{i=r+1}^{n-s} Q_{i} X_{i: n} \tag{2.45}
\end{equation*}
$$

and
where

$$
\begin{equation*}
\sigma^{*}=\sum_{i=r+1}^{n-s} Q_{2 i} X_{i: n} \tag{2.46}
\end{equation*}
$$

$$
\begin{equation*}
Q_{1 i}=\frac{A_{i}}{T_{11} T_{22}-T_{12}^{2}}\left\{T_{22}\left(S_{1 i}^{*}-S_{1, i-1}^{*}\right)-T_{12}\left(S_{2 i}^{*}-S_{2, i-1}^{*}\right)\right\} \tag{2.47}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{2 i}=\frac{A_{i}}{T_{11} T_{22}-T_{12}^{2}}\left\{T_{11}\left(S_{2 i}^{*}-S_{2, i-1}^{*}\right)-T_{12}\left(S_{1 i}^{*}-S_{1, i-1}^{*}\right)\right\} \tag{2.48}
\end{equation*}
$$

2.b. A single Unknown Parameter

When only one of the parameters μ or σ is unknown, Blom's method should be modified.

2.b. 1μ Unknown, σ Known:

The variance of δ_{*} in (2.17) or equivalently Z in (2.19) is minimized with respect to the R_{i} 's subject to the single side condition.

$$
\begin{equation*}
\sum_{i=0}^{n} R_{i} S_{1 i}=L_{1} \tag{2.49}
\end{equation*}
$$

Apply the method of Lagrange multipliers, the solution is found to be

$$
\begin{equation*}
R_{i}-\bar{R}=\lambda_{1} S_{1 i} \tag{2.50}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{1}=\frac{L_{1}}{T_{11}} \tag{2.51}
\end{equation*}
$$

is a Lagrange multiplier defined earlier. Further, the coefficients of the resulting nearly best estimate $\delta_{* 1}$ are given by

$$
\begin{equation*}
Q_{i}=A_{i} \frac{L_{1}}{T_{11}}\left(S_{1 i}-S_{1, i-1}\right) \tag{2.52}
\end{equation*}
$$

The mean of $\delta_{* 1}$ in (2.14) is given by

$$
\begin{align*}
& E\left(\delta_{*_{1}}\right)=L_{1} \mu+\sigma \sum_{i=0}^{n} S_{2 i} R_{i} \\
& E\left(\delta_{*_{1}}\right)=L_{1}\left(\mu+\sigma \frac{T_{12}}{T_{11}}\right) \tag{2.53}
\end{align*}
$$

Thus the nearly best linear unbiased estimate $\mu^{*^{\prime}}$ of μ is then obtained by taking $L_{1}=1$ and subtracting the known term $\sigma \frac{T_{12}}{T_{11}}$ from δ_{*}.

That is

$$
\begin{equation*}
\mu^{*^{\prime}}=\sum_{i=1}^{n} R_{i} Z_{i}-\sigma \frac{T_{12}}{T_{11}} \tag{2.54}
\end{equation*}
$$

The variance of $\mu^{* \prime}$ is approximately

$$
\begin{equation*}
\operatorname{var} \mu^{*} \cong \frac{\sigma^{2}}{(n+1)(n+2) T_{11}} \tag{2.55}
\end{equation*}
$$

2.b.2. μ Known, σ Unknown

The variance of δ_{*} in (2.17) or equivalently, Z in (2.19), in this case, is minimized with respect to R_{i} 's subject to the single side condition

$$
\begin{equation*}
\sum_{i=0}^{n} R_{i} S_{2 i}=L_{2} \tag{2.56}
\end{equation*}
$$

The solution is found to be

$$
\begin{equation*}
R_{i}-\bar{R}=\lambda_{2} S_{2 i} \tag{2.57}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{2}=\frac{L_{2}}{T_{22}} \tag{2.58}
\end{equation*}
$$

The coefficients of the nearly best estimate $\delta_{*_{2}}$ are given by

$$
\begin{equation*}
Q_{i}=A_{i} \frac{L_{2}}{T_{22}}\left(S_{2 i}-S_{2, i-1}\right) \tag{2.59}
\end{equation*}
$$

Then the mean of $S_{*_{2}}$ is

$$
\begin{equation*}
E\left(\delta_{* 2}\right)=L_{2}\left(\frac{\mu T_{12}}{T_{22}}+\sigma\right) \tag{2.60}
\end{equation*}
$$

Thus the nearly best linear unbiased estimate $\sigma^{*^{\prime}}$ is obtained by taking $L_{2}=$ 1 and subtracting the known term $\frac{\mu T_{12}}{T_{22}}$ from δ_{*}. That is

$$
\begin{equation*}
\sigma^{*^{\prime}}=\sum_{i=1}^{n} R_{i} Z_{i}-\frac{\mu T_{12}}{T_{22}} \tag{2.61}
\end{equation*}
$$

The variance of $\sigma^{* \prime}$ is approximately

$$
\begin{equation*}
\operatorname{var} \sigma^{*^{\prime}}=\frac{\sigma^{2}}{(n+1)(n+2) T_{22}} \tag{2.62}
\end{equation*}
$$

By considering the data given by ${ }^{[9]}$, in example (1), we shall demonstrate Blom's method to estimate the scale parameter of half-logistic distribution in the next section.

3. Application of Blom's Method for Estimating the Scale Parameter of the Half Logistic Distribution (Location Parameter is Known)

The c.d.f. of the half-logistic distribution is given by

$$
\begin{align*}
F(y, \mu, \sigma) & =\frac{1-\exp -\left(\frac{y-\mu}{\sigma}\right)}{1+\exp -\left(\frac{y-\mu}{\sigma}\right)}, \quad \mu \leq y<\infty \tag{3.1}\\
& =0, \quad \text { elsewhere }
\end{align*}
$$

where μ and σ are the location and scale parameters. The standardized variate $Z=\frac{Y-\mu}{\sigma}$ follows the standardized half-logistic distributionwith c.d.f. given by

$$
\begin{array}{rlrl}
G(z) & =\frac{2}{1+e^{-z}}-1 & & \tag{3.2}\\
& & z \geq 0 \\
& =0 & &
\end{array}
$$

Estimation of the parameters of this distribution has been studied by several authors ${ }^{[9],[10],[11]}$. Let $Z_{1: n}, Z_{2: n}, \ldots, Z_{n: n}$ be a random sample of size n obtained from (3.2) and let $Z_{1} \leq Z_{2} \leq Z_{3} \leq \ldots . \leq Z_{n}$ be the order statistics obtained from this random sample.

Example (1)

The following data represented failure time, in minutes, for a specific type of electrical insulation that was subjected to continuously increasing voltage stress as given by ${ }^{[9]}$:

$$
12.3,21.8,24.4,28.6,43.2,46.9,70.7,75.3,95.5,98.1,138.6,151.9
$$

These data are also listed in column 8 of table (2); Chan $1989{ }^{[9]}$ has shown that the one parameter half-logistic distribution (3.1) with $\mu=0$ fits the above data extremely well. In this case we have a complete sample of size $n=12$ and the location is known $(\mu=0)$. NBLUE of the scale parameter σ is now desired.

For estimating the scale parameter σ by linear function of order statistics, Blom's NBLUE σ^{*} is in the form $\sigma^{*}=\Sigma Q_{i} X_{i: n}$, the successive 7-steps mentioned earlier is now followed. For step one, the expected values of the $\mathrm{i}^{\text {th }}$ order statistics for the standardized half-logistic distribution $\alpha_{i: n}=E_{i}\left(Z_{i: n}\right), 1 \leq i \leq n$ can be calculated using the following recurrence relations given by ${ }^{[10]}$

$$
\begin{align*}
\alpha_{1: n+1} & =2\left(\alpha_{1: n}-\frac{1}{n}\right), \tag{3.3}\\
\alpha_{2: n+1} & =\frac{(n+1)}{n}-\frac{(n-1)}{2} \alpha_{1: n+1} \quad n \geq 1 \tag{3.4}\\
\alpha_{i+1: n+1} & =\frac{1}{i}\left[\frac{n+1}{n-i+1}+\frac{n+1}{2} \alpha_{i-1: n}-\frac{n-2 i+1}{2} \alpha_{i: n+1}\right], 2 \leq i \leq n \tag{3.5}
\end{align*}
$$

such that $\alpha_{1: 1}=E\left(Z_{1: 1}\right) \ln 4$. Expected values of the $i^{\text {th }}$ order statistics for $n=$ 12 are given in column (1) of table (1). Next, the weights of A_{i} in (2.3) are

$$
\begin{gather*}
A_{i}=\frac{(n+1)^{2}-i^{2}}{2(n+1)^{2}}, \quad 1 \leq i \leq n \tag{3.6}\\
A_{0}=A_{n+1}=0 \tag{3.7}
\end{gather*}
$$

These equations give column (2) of table (1). For $n=12$ we construct the first 3 columns of table (2). For step $4, S_{2 i}$ of (2.16) can be simplified as follows $S_{2 i=}\left\{\begin{array}{l}\frac{-n(n+2)}{2(n+1)^{2}} \\ \alpha_{1: n} \quad i=0 \\ \frac{1}{2(n+1)^{2}}\left\{\left((n+1)^{2}-i^{2}\right)\left[a_{i: n}-\alpha_{i+1, n}\right]+(2 i+1) \alpha_{i+1, n}\right\}, i \leq i \leq n\end{array}\right.$
where $\alpha_{i: n}, \alpha_{i+1: n}$ can be obtained from column (1) of table (1). Values of $S_{2 i}$ are listed in column (4) and the coefficients Q_{i} in (2.59) are given in column (5) and finally, using the data of Example 1 and the coefficients of column (5) the NBLUE of the scale parameter σ when the location parameter μ is known $(\mu=$ 0) is found to be

$$
\sigma^{*^{\prime}}=46.48649317
$$

and its variance by (2.62) is

$$
\begin{aligned}
\operatorname{var}\left(\sigma^{*^{\prime}}\right) & =0.04487(46.48649) \\
& =2.08585
\end{aligned}
$$

Balakrishnan and Cohen ${ }^{[5]}$ and Balakrishnan and Chan ${ }^{[11]}$ lobtained σ for this example by four methods. Comparison of our results with their results is illustrated in table (2), which shows that the methods gave very close results of σ^{*} and its variance.

Table 1. Calculations of nearly best linear unbiased estimator of the scale parameter of the halflogistic distribution, sample size $=12$.

I	1	2	3	4	5	6	7
	$E\left(X_{i}\right)$	A_{i}	$A_{i}^{*} E\left(X_{i}\right)$	$S_{2 i}$	Q_{i}	Data	$Q_{i}^{*} Q_{i}$
0	0	0	0	-0.077235201	0	0	0
1	0.15539	0.497041	0.077235201	-0.076024515	0.004913988	12.3	0.060442046
2	0.31395	0.488166	0.153259716	-0.072979442	0.01213879	21.8	0.264625612
3	0.47793	0.473373	0.226239158	-0.067570816	0.020907432	24.4	0.510141351
4	0.64907	0.452663	0.293809973	-0.060443221	0.02634682	28.6	0.753519043
5	0.83151	0.426036	0.354253194	-0.050424755	0.034854411	43.2	1.505710556
6	1.02843	0.393491	0.404677949	-0.038005408	0.039906513	46.9	1.871615479
7	1.24689	0.35503	0.442683357	-0.022090924	0.046138962	70.7	3.262024599
8	1.49613	0.310651	0.464774281	-0.00210472	0.050700623	75.3	3.817756888
9	1.79324	0.260355	0.466879	0.023551984	0.05454777	95.5	5.209312034
10	2.17166	0.204142	0.443327016	0.057780057	0.057059114	98.1	5.597499069
11	2.71489	0.142012	0.385546959	0.10770711	0.057899017	138.6	8.024803697
12	3.75642	0.073964	0.277839849	0.277839849	0.102758675	151.9	15.60904279
13	0	0	0	0	0		

Table 2. Comparison of estimators of the scale parameter of the half-logistic distribution obtained by four methods.

Method	$\sigma^{* \prime}$	$\operatorname{Var}\left(\sigma^{* \prime}\right)$
NBLUE	46.48649317	0.04487σ
BLUE'S	48.01	0.05848σ
BLUE'S based on 2 optimally selected order statistics	48.41	0.06647σ
MLE	47.41609	-
AMLE	47.41613	0.05801σ

From the above results, we notice that the methods gave very close results of $\sigma^{*^{\prime}}$ and its variance.

References

[1] Blom, G., On Linear Estimates with Nearly Minimum Variances. Arkiv for Mathematic. Bd3 nr 31, 365 (1956).
[2] Blom, B., Statistical Estimates and Transformed Beta-Variables. New York: John Wiley \& Sons, Inc. (1958).
[3] Sarhan, A.E. and Greenberg, B.C., eds., Contributions to Order Statistics. New York: John Wiley and Sons, Inc (1962).
[4] Ragab, A. and Green, J., Estimation of the Parameters of the Logistic Distribution Based on Order Statistics. Am. J. of Math. and Manag. Sci., 7(3\&4): 307-323 (1987).
[5] Balakrishnan, N. and Cohen, A.C., Order Statistics and Inference Estimation Methods. Academic Press, Inc. (1991).
[6] Jamjoom, A.A., Some Contribution to the Study of Prediction of Order Statistics and Their Applications in Life Testing: Bayesian and Classical Approaches. Ph.D. Thesis, Math. Dept., Girls College of Education, Jeddah, Saudi Arabia (1995).
[7] Al-Ghufaily, N.A., Special Study of Order Statistics and Some of Their Function. Master Thesis, Math. Dept., Girls College of Education, Jeddah, Saudi Arabia (2000).
[8] Swokowski, E.W., Calculus with Analytic Geometry. 3rd ed., Boston, Massachusetts, Weber \& Schmidt Publishers, 767 (1984).
[9] Chan, P.S., Half-Logistic Distribution: Type II Censoring and Estimation, Master Thesis, McMaster University, Hamilton, Ontario, Canada (1989).
[10] Balakrishnan, N. and Puthenpura, S., Best Linear Unbiased Estimation of Location and Scale Parameters of the Half Logistic Distribution. J. Statist. Comput. Simul. 25: 193: 204 (1986).
[11] Balakrishnan, N. and Chan, P.S., Estimation of the Scale Half Logistic Distribution under Type II Censoring. Computational Statistics \& Data Analysis, 13: 123-141 (1992).

تقدير معلمة القياس لتوزيع Half Logistic باستخدام طريقة بلوم

آمنة بنت عبد اللطيف صلاح جممجوم

قسم الرياضيات ، الأقسام العلمية ، كلية التربية للبنات بجلدة جـــــــة - المملكة العربية السعودية
 بافتر اض أن مـعلمة الموضع معـلومة ، وذلك باستـخـدام طريــة
 باستخدام دوال خطية في الإحصاءات الترتيبية ، ويطلق على المر المقدر اسم

 صغير جدا وامتاز مقدر المربعات الصغرى التقريبي بأقل تباين .

[^0]: Correspondence address: A.A. Jamjoom, P.O. Box 415, Jeddah 21441, Saudi Arabia.

