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ABSTRACT. In this paper, symbolic expression for the solution of the
universal Kepler equation is developed using series reversion al-
gorithm.

1. Introduction

During space mission of all types of two-body motion (elliptic, parabolic, or hy-
perbolic) appear. For example, the escape from the departure planet and the cap-
ture by the target planet, involve hyperbolic orbits, while the intermediate stage
of the mission commonly depicted as a heliocentric ellipse, may also be helio-
centric parabola or hyperbola. In addition, in some systems, the type of an orbit
is occasionally changed by perturbing forces acting during finite interval of time.
Thus far we have been obliged to use different functional representations for the
motion depending on its type and a simulation code must then contain branching
to handle a switch from one type to another. In cases where this switching is not
smooth, branching can occur many times during a single integration time-step,
causing some numerical �chatter�. Consequently, universal formulations are des-
perately needed to that orbit predictions will be free of the troubles, since a sin-
gle functional representation suffices to describe all possible orbits. As a result
of this universalization, is the universal Kepler�s equation which is highly tran-
scendental and usually solved by iterative methods [Sharaf and Sharaf, 1998].

Undoubtedly true that, the numerical methods provide very accurate solu-
tions. But certainly, if full analytical formulae are utilized with nowadays
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existing symbols used for manipulating digital computer programs, they def-
initely become invaluable for obtaining solutions with any desired accuracy.
Moreover, symbolic computing algorithms for space dynamics problems repre-
sent new branch that may be called the algorithmization of space dynamics
[Bumberg, 1995].

Coping with this line of recent researches and also due to the important role
of the universal Kepler�s equation, the present paper is devoted to develop sym-
bolic expression for the solution of the universal Kepler equation.

2.  Formulation

2.1  Series Reversion Algorithm

General algorithm for reversing a power series which is the fundamental
technique of the subsequent analysis, will be developed as follows: Consider the
functional equation

η = ξ  + α φ (η) .         |a| < 1 , (2.1)

then according to Lagrange expansion theorem (Smart, 1953), we have

Let y(x) be a function which can be expanded in a Taylor series in the neigh-
borhood of x = x0. Thus

where

In the following, we assume that B1 is different from zero and write Equation
(2.3) in the form

   x = x0 + (y � y0) φ (x) , (2.4)

where φ (x) is defined by

Equation (2.4) is precisely the same form as Equation (2.1),  then we can ex-
press x as a power series in α = y � y0 to get
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where

and φ (x) is defined in Equation (2.5). The series for x(y) is said to be the reverse
of the series for y(x).

Battin (1999) developed an elegent algorithm to express n of the coefficients
C1, C2, ... of the reversed series in terms of the coefficients B1, B2, ... of the
original series. The basic equations of this algorithm are

2.2  Universal Kepler�s Equation

In the universal function representation, Kepler�s equation relating time and
position (the universal anomaly χ) is given by

where α is the reciprocal of the semimajor axis, µ is the gravitational parameter
(universal gravitational constant times the mass of the central attracting body), t

is the time and xxxxxxxxxxx, with r and v the position and velocity vectors, re-

spectively, of the orbiting body; subscript 0 will denote evolution at the time t0.

In Equation (2.9), the quantity σ  can be replaced with an expression in-
volving only χ as the variable (Battin, 1999),

σ = σ0 U0 (χ  ; α) + (1 � α r0) U1 (χ  ; α), (2.10)

where the Un (x ; α) are the universal functions; defined by
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σ µ= r.v /  ,

    χ α µ σ σ= +( – ) –  ,t t0 0 (2.9)
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3.  Symbolic Representation of χχχχ

From Equations (2.10) and (2.11) into Equation (2.9) we get a series of the form

(note that A0 = 0 because χ = 0 at t = t0). Literal analytical expressions of  Aj ; j
= 1, 2, ... , 20 are listed in Table 1.

TABLE 1.  Literal analytical expressions of Aj ,  j = 1, 2, ... , 20 of equation (3.1).

Reversing series (3.1) using the algorithm of Subsection 2.1 leads to a solu-
tion for χ(t, α, s0, r0),

where N is the order of the truncated series. The procedure was mechanized
using software package Mathematica to generate the C�s coefficients in terms of
α, σ0, r0 and µ. Because of space limitations, only the first ten C�s coefficients
are listed in Table 2.

Conclusion

In concluding the present paper, symbolic expression for the solution of the
universal Kepler�s equation is developed using series reversion algorithm. This
solution is useful analytic approximation that takes advantage of the singularity-
free (as e →) universal function formulation.
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TABLE 2. Literal analytical expressions of Cj , j = 1, 2, ... , 10 of equation (3.2).
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