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ABSTRACT.  In this paper, electron density distribution with radial dis-
tance in the solar corona have been investigated using an exponential
representation. Selection and solution criteria used to determine very
accurately the density scale height in the solar corona. From the slope
we computed the density scale height (Ho) with the value of 1.46 ×
107 meters, which is in a good agreement with that mentioned in the
literature. From this slope we found also the value of the arbitrary ref-
erence height, which is 0.5.

1. Introduction

The determination of solar atmosphere parameters from spectral lines have been
of considerable importance and interest for many years. Numerous amount of
data have been utilized for this purpose using considerable amount of observa-
tions from different ground-based and space solar observatories. Some of which
are OSO-7, Skylab, SMM, Ulysses, Yohkoh, SOHO and Trace and many others
will be on the run in a few years time, e.g. Solar-B[1-6].

In this paper, we will use data obtained by a spectrometer known as Coronal
Density Spectrometer (CDS) on The Solar and Heliospheric Observatory
(SOHO). This satellite has a unique operating mode that could be considered as
almost as an interactive solar observatory, where it provides live data display at
stations like Goddard Space Flight Center. Soho has certainly provided the solar
community with a tremendous amount of knowledge and information reaching
about 2000 articles in journals, conferences and workshops[5,7-8]. This very use-
ful knowledge and detailed information about our star spans a wide range of
spectrum ranging from the interior, through the hot and dynamic atmosphere
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reaching the solar wind with its twelve different sophisticated instruments
aimed for investigating the three previous goals. Five of them have been des-
ignated mainly for studying the solar atmosphere its structure and dynamic, e.g.
SUMER, CDS, EIT, UVCS and LASCO.

Recent data taken by the CDS regarding electron density and temperature
have provided new views about the coronal plasma. For example, at the transi-
tion region[9] it has been shown that, by using ratios of line intensities of ions
such as O III, O IV and O V, a significant change in density inhomogeniety or
the filling factor produces an intensity increase in quiet sun network by the or-
der of 10-40% (or what is known as the EUV flashes). In the corona, on the other
hand, CDS and SUMER have measured the electron temperature as a function
of height above the limb in a polar coronal hole. The temperature has been
found to increase from 0.8 × 106 K close to the limb, rising to a maximum of
less than 1.0 × 106 K at 1.15 Ro (where Ro is the solar radius), then falling to
around 0.4 × 106 K at 1.3 Ro. On the other hand, on the equator the temperature
was found to increase constantly as a function of height, from about 1 × 106 K
close to the limb to about 3 × 106 K at 1.3 Ro.

However, electron densities using the line intensity ratios have been studied
extensively[6,9-12]. The CDS has significantly improved many of the past results
in terms of spatial resolution, and diagnostics capabilities. In particular, it can
provide measurements very close to the limb, at distances unavailable from the
white light observations. It has been observed that there is an exponential decay
of line intensities in the solar atmosphere as a function of radial distance. This
information has been used to calculate density scale heights from lines formed
at coronal temperature ranging from 9 × 105 to 2 × 106 K. Spectral line ratios of
density sensitivity, e.g. Si X 356/347, have been used to derive an average den-
sity which is found to decrease from 7 × 108 cm�3 near the limb to 1.5 × 108

cm�3 at 1.2 Ro.

In the present paper, our investigation will concentrate on above the limb ob-
servations of the quiet sun in the coronal holes. This particularly involves meas-
urements of line intensities as a function of the radial distance, where we will
investigate the electron density scale height. In Section 2, we discussed the
model for the electron density, where we have chosen a simple one for this pur-
pose utilizing an exponential representation of the observed line ratios used to
obtain density diagnostics. Also, we have discussed the solution and criteria in
order to determine scale height. Meanwhile, in Section 3, numerical studies pro-
viding an acceptable solution for our case, as well as an application has been
provided to determine the referenced height.
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2. Basic Formulations

2.1 Exponential Representation for Electron Density Determination in Solar Corona

In what follows, we will use the exponential representation for the electron
density used for solar corona assuming that the plasma is isothermal and of ho-
mogeneous nature[4]. In this representation the electron density varies with
height z according to the following equation:

Ne = No Exp (� z/h),

By substituting z = (r-ro) Ro
2, and h = Ho ro r, we get

Ne = No Exp (� (r-ro) Ro
2 / Ho ro r), (2.1)

where Ho is the density scale height, r is the distance from the surface of the sun
to a place in the corona, Ne is the electron density and ro is an arbitrary refer-
ence height and No is the value of Ne at r = ro.

Equation (2.1) could be rewritten as

Y = C1 + C2 X , (2.2)

where

C1 = ln No � 1 / Ho ro , (2.3.1)

                     C2 = 1 / Ho , (2.3.2)

                       Y = ln Ne , (2.3.3)

                       X = 1 / r. (2.3.4)

Suppose we have measured the electron density (hence Y�s) in the solar co-
rona at different values of r (hence X�s), as obtained from the CDS spectrograph
on the SOHO satellite[8]. As discussed earlier we will investigate Si X spectral
lines in the coronal holes.

2.2 Determination of C1 and C2 and the Error Estimates

2.2.1 Solution for C1 and C2

Let m (say) observational data (Xk , Yk); k = 1, 2, ..., m be known, then de-
fining

we get for the solutions of C1 and C2 of Equation (2.2) in the sense of the least-
squares criterion the expressions

(2.4)
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C1 = (B1A2 � B2A1) / D , (2.5)

C2 = (B2m � B1A1) / D  , (2.6)

where

D = mA2 � A1
2 . (2.7)

The error estimates are given in the following points.

2.2.2. Standard Error of the Fit

According to the least-squares criterion, the standard error of the fit is given by

Expanding we get

where A1, A2, B3, C1 and C2 are given by Equations (2.4), (2.5) and (2.6). Note
that if the precision is measured by probable error e, then

e = 0.6745 σ . (2.9)

2.2.3. Standard Errors of C1 and C2

The standard errors of the least-squares solutions C1 and C2 are given as

where gkk are the diagonal elements of the inverse of the matrix G used for the
solutions C1 and C2. Therefore, the standard and the probable errors of C1 and
C2 are 

given as

where A2, D and s are given from Equations (2.4), (2.7) and (2.8).

2.2.4. The Average Squared Distance Q

The average squared distance Q between the least-squares estimators of C1
and C2 and their true values is given as in Kopal and Sharaf[13].
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where λ1, λ2 are the eigen values of the matrix G. Evaluating λ�s we get

2.2.5. Coefficient of Correlation

Another useful estimator is the correlation coefficient which is a measure of
the degree to which the two variables (X, Y) are related to each other. In our
case, the coefficient of correlation R is given by

The closer r is to 1 or �1 the stronger the exponential representation between
the two variables (X, Y). The closer r is to zero, the weaker the exponential rep-
resentation. The sign of r indicates the direction of the representation between X
and Y.

3. Numerical Study

3.1 Acceptable Solution Set

Although the least-squares method is one of the most powerful techniques
that could be used for the present problem, it is at the same time exceedingly
critical. This is because the least-squares estimate does not have detecting and
controlling techniques for the sensitivity of the solution to the optimization cri-
terion of the variance σ2 as minimum. As a result there may exist a situation in
which there are many significantly different values of the solutions C1 and C2
[see Tables 1, 2] that the variance to an acceptably small value. At this stage we
should point out that: (1) the accuracy of the estimators and the accuracy of the
fitted representation [Equation (2.2)] are two distinct problems; and (2) an ac-
curate estimator will always produce small variance, but small variance does
not guarantee an accurate estimator.

According to these two notes, it is necessary to reformalize the concept of an
acceptable solution for our problem. This last point is illustrated as follows. Let
us define an acceptable solution set for the present problem as
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The ε�s are error tolerances, of course, the set of these tolerances is different for
the different color indices. In this respect, the error controlling formulae of Section
2 could be useful for determining the coefficients C1 and C2 very accurately.

3.2 Numerical Results

� The data samples were collected from[8]. The observations used here are
coronal densities measured above the north and south coronal holes in 1997
May 3 and 12, respectively. The total number of points are 154. It should be
noted that the ordinates of these data are divided by 108 in our calculations.

� The selection criteria for the considered data is

| O � C | ≤ 0.18 (3.2)

Where O is the observed value of Y, while C is that calculated from Equation (2.2).

� As a result of the criteria (3.2), the number of points, is reduced to 124. The
corresponding elements and the tolerances of an accurate acceptable solution set
is described in Section 3.1 and are listed in Table 2.

� The dependence of the solutions and the tolerances ε�s on the selection cri-
teria are listed in Table 1. Also the error bars of Fig. 1 are given as typical ex-
amples of this dependence.

TABLE 1. Dependence of the solutions and the tolerances on the selection criteria.

O-C No. C1 C2 e eC1/C1 eC2/C2 Q R

20 154 13.3143 6.16678 0.1085 0.0236 0.0251 0.1012 0.9073

0.4 152 13.3028 6.18755 0.0981 0.0193 0.0206 0.0827 0.9237

0.3 146 13.1077 6.38358 0.0847 0.0149 0.0159 0.0661 0.9433

  0.25 140 12.9552 6.53728 0.0774 0.0131 0.0138 0.0605 0.952  

  0.23 135 12.8421 6.65152 0.0718 0.012  0.0124 0.0562 0.9581

0.2 127 12.765  6.72925 0.0639 0.0098 0.0104 0.0503 0.9653

  0.18 124 12.6357 6.86087 0.0611 0.0092 0.0097 0.0483 0.9686

� Figure 2 represents the calculated distribution of electron densities as a
function of height together with the corresponding correlation coefficient.

3.3. Applications

3.3.1 Determination of the Density Scale Height

Following Equation (2.3.2), we could calculate the density scale height, as
well as using the data from Table 2, we have
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FIG. 1. Observed electron density distribution as a function of height.

FIG. 2. Error bars are indicated for e.

TABLE 2. Elements of the optimum acceptable solution set.

C1 = 12.6357

C2 =  6.86087

e = 0.0611

eC1
/C1 =  8.0724 * 10�3

eC2
/C2 =  0.0157

Q =  0.0483

R =  0.9686
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Ho = 1.46 × 107 meters,

Which is in good agreement with the value discussed in[8] for a value of scale
height temperature Ts i.e. the temperature that the plasma would have in hydro-
static equilibrium and which has the value of 2 × 105 K.

3.3.2. Determination of the Arbitrary Reference Height

In order to determine the value of the arbitrary reference height, as in the fol-
lowing equation:

ro = C2 / (ln No � C1)

Also if we adopt for No the value of 3.6 × 108 cm�3, and using the data men-
tioned in Table 2, we get for ro the value of 0.5.

4. Conclusion

In concluding the present paper, selection and solution criteria enable us to
determine very accurately the density and scale height in the solar corona. From
the slope of the Equation (2.2) we compute the density scale height Ho with the
value of 1.46 × 107 meters, which is in a good agreement with that mentioned in
Fludra�s work. From this slope and the coefficient C2 we find also the value of
the arbitrary reference height to be 0.5.
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