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Abstract. A quantitative interpretation method of self-potential field 

anomalies has been proposed in this work. The method is designed 

and implemented for determining the center depth, electric dipole 

moment or magnitude of polarization, polarization angle, and 

geometric shape factor of an underground buried body from field data 

related to simple geometric structures such as cylinders, spheres and 

sheet-like bodies. The method is based on mathematical modeling by 

using the global optimization method of which known as an adaptive 

simulated annealing (ASA). The utility and validity of this method 

have been first demonstrated on a theoretical example using simulated 

data generated from a known model with different random errors and 

a known statistical distribution, where a very close agreement was 

obtained between assumed and evaluated parameters of the model. 

Subsequently, field data from Germany, India and Turkey have been 

considered for which the interpreted results by other interpretation 

methods are available for comparison. The agreement between the 

results obtained by our proposed method and other methods is good 

and comparable.  

Keywords: Self-potential anomaly, Mathematical modeling, Expo-

nential penalty function, Global optimization algorithm. 

 

Introduction 

The self-potential ( )SP method is one of the oldest methods and enjoys 

wide applications in sulphides and graphites exploration and in geophysi-

cal groundwater investigations. The interpretation methods of SP  

anomalies are not yet very well developed. However, the quantitative 
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interpretation of SP anomalies is usually carried out by approximating 

the causative source by simple geometrically shaped models (viz, sheet, 

cylinder, sphere…etc).  According to this simplified concept, different 

interpretation techniques are available in the literature for the quantitative 

interpretation of SP  anomalies. The methods proposed by (Yungul, 

1950), (Paul, 1965) and (Bhattacharya and Roy, 1981) use certain 

characteristic points of the anomaly and hence they turned out to be less 

reliable in most cases. The curve-matching method proposed by (Meiser, 

1962) is cumbersome, especially when there are many parameters to be 

determined. The methods of least-squares (Shalivahan et al., 1998), 

(Abdelrahman et al., 1997) and (Abdelrahman and Sharafeldin, 1997) 

involve a series of trials in minimizing the difference between the 

observed and the calculated values. The interpretation made by the 

methods based on Fourier and Hilbert transforms (Atchuta Rao et al., 

1982) and (Sundararajan et al., 1990; 1996; 1998) is not straightforward 

and subjects to some inevitable errors in the estimation of the parameters, 

due to the inaccurate location of origin. Further, these methods are 

reliable only for very long profiles. Derivative analysis methods 

(Abdelrahman et al., 1998; 2003) involve higher derivative anomaly. 

We describe here a practical method of a nonlinear inversion 

technique for interpreting self-potential anomalies due to simple 

geometrical structures using a global optimization method known as the 

adaptive simulated annealing (Ingber, 1996).   

Using the adaptive simulated annealing (ASA) - a variant of 

simulated annealing (SA), a constrained, nonlinear programming problem 

(CNPP) has been solved in an attempt to estimate the geophysical 

parameters related to spheres, cylinders or sheet-like structures. 

The (CNPP) has been mathematically formulated to describe the 

geophysical problems. This (CNPP) is consisting of a mathematical 

objective or target function ( )f v to be minimized on an unbounded 

subset X contained in the real space of parameters. Where v  is the 

vector of geophysical parameters and X  is a subset defined by 

mathematical inequalities constraints of the form ( ) 0 ( 1,..., )
i

g v i m≥ =  

where the geophysical parameters are supposed to satisfy. Ignoring these 

inequalities constraints probably yields to error estimations of parameters 

in the general case. The objective function ( )f v is taken, in this research, 
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as the statistical likelihood function, which depends on the deviations 

between observed points and synthetic potentials and also on the number 

of observations. 

The (CNPP) is very difficult to be solved in the domain of convex 

programming because the feasible subset X is not bounded in the 

parameters space. To avoid this difficulty, the (CNPP) is transformed 

into an unconstrained, nonlinear programming problem (UNPP), by 

introducing an exponential penalty function. The goal of using the 

penalty function is to eliminate the constraints ( ) 0 ( 1,..., )
i

g v i m≥ = of 

(CNPP) and reactive them anew in the target function of (UNPP). The 

target function of (UNPP) is then consisting of both, the objective 

function of (CNPP) and the suggested exponential penalty function. The 

penalty function concept has been previously used, in logarithmic form, 

for the interpretation of SP and magnetic anomalies (Asfahani and Tlas, 

2004; 2005). 

In the present work, the (UNPP) is solved by the adaptive simulated 

annealing (ASA) random search algorithm (stochastic method), known for 

optimizing numerical functions of several real variables. The obtained 

solution of the (UNPP) includes the geophysical parameters of the 

studied structure such as: depth, amplitude coefficient, index parameter, 

and shape factor.  

The validity of this method is tested on a synthetic example with 

different random errors of 5% and 10% and through practical field data 

from Germany, India and Turkey. 

The (ASA) stochastic algorithm is one of the most well developed 

and widely used iterative techniques for solving optimisation problems. 

The method uses an analogy between the process of physical annealing 

and the mathematical problem of obtaining the global minimum of a 

function (assimilated to energy) which may have local minima 

(metastable states). This algorithm can be easily coded, robust, and does 

not require differentiation of the target function with respect to the 

decision variables (Ingber and Rosen, 1992) and (Ingber, 1989; 1996). 

The appendix explains in more detail the steps of this algorithm and 

provides sufficient information to allow its implementation and coding. 
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Geophysical Problem Formulation for the Case of a 

Two-Dimensional Inclined Sheet Model 

The expression for potential ( )V  for a sheet like body, i.e., for a pair 

of line poles at any point on the free surface in a Cartesian coordinate 

system (Fig.1) is given by (Roy and Chowdhury, 1959) as follows:  
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Where 
1
r  and 

2
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of observation, I  is the current per units length and ρ  is the resistivity 
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Where, h is the depth centre of the sheet, θ  is the inclination, a is the 

width of the sheet and x is the distance of the observation point from the 

origin. 

 

 
 

Fig. 1. The diagram for a sheet-like structure. 
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Replacing the expressions of 
1
r , 

2
r and 

2

I
k

ρ

π
= (electric dipole 

moment) into the equation of 
1 2

( , )V r r , the following equation could be 

obtained: 
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The evaluation of the geophysical parameters ( , , , )h a kθ related to 

the sheet-like structure could be obtained by solving the following 

constrained, nonlinear programming problem (CNPP): 

             

2
1

2

1

0

1
( , , , , )

2

sin 0,
2

0,

0,

0 180

.

i
e e

N

i

Maximize LH h a k e

a
Subject to h

h

a

and

k

σ

θ σ
π σ

θ

θ

−⎛ ⎞
− ⎜ ⎟

⎝ ⎠

=

=

− ≥

≥

≥

≤ ≤

−∞ < < +∞

∏

         (CNPP)1 

Where N is the number of observation points and 

( ) ( , , , , ) ( 1,..., )
i i i

e L x V x h a k i Nθ= − = are the deviations between the 

observed points ( ) ( 1,..., )
i

L x i N= and the synthetic potentials 

( , , , , ) ( 1,..., )
i

V x h a k i Nθ = at the discrete points ( 1,..., )
i
x i N= . 

The objective function ( , , , , )LH h a kθ σ  of the mathematical model 

(CNPP)1 is known as the statistical likelihood function. 

The variable 
1 2

( , ...., )T
N

e e e e= is a random variable and accords to 

the Gaussian (normal) distribution. The variables e  and σ  are the 

arithmetic mean and the standard deviation of the residuals 

( 1,..., )
i
e i N= (standard error) respectively. For a best estimation of 

parameters, e  must be equal to zero and σ  must be a minimal. Taking 
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these criteria in consideration, the mathematical model (CNPP)1 

becomes: 
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The statistical likelihood function ( , , , , )LH h a kθ σ is strictly 

positive. To insure obtaining more accurate and more precise parameters 

estimation, it is preferable to take the natural logarithm of the statistical 

likelihood function, which gives the following equivalent mathematical 

model. 
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Where, ( )( , , , , ) ( , , , , )g h a k Ln LH h a kθ σ θ σ= .   

To solve the mathematical model (CNPP)3 , it is sufficient to solve  

the following equivalent mathematical model  
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The problem (CNPP)4 is very difficult to be solved in the domain of 

convex nonlinear programming because the feasible region:  

4 0( , , , ) / 0, 0, sin 0,0 180 ,
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a
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is not bounded in the geophysical parameters space 4
R . To avoid this 

difficulty, the mathematical problem (CNPP)4 is converted into an 

unconstrained, nonlinear minimization  (UNPP) one by introducing a 

new objective function ( , , , , )h a kφ θ σ , which considers both the 

objective function ( , , , , )f h a kθ σ of (CNPP)4 and a suggested 

exponential penalty function. The penalty function is defined by the 

bounded constraints of the studied problem (CNPP)4. This new objective 

function is defined as follows: 

1
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Where: 0

1 2 3 4 5
sin , , , , 180

2

a
g h g h g a g gθ θ θ= − = = = = − , m is the 

number of constraints ( 1,..., 5)
i

g i m= =  and r (penalty factor) is an 

arbitrary positive real number chosen to be close to zero, and is taken as 

equal to 
1

N
 in the interpretation related to a sheet-like structure. Using 

this new function, the problem (CNPP)4 becomes as follows: 
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The unconstrained, nonlinear programming problem (UNPP) is 

thereafter solved by the adaptive simulated annealing random search 

algorithm, which is implemented for solving unconstrained, nonlinear 

mathematical problems. The new interpretative technique is firstly tested 

on a theoretical synthetic example with different random errors in order 

to demonstrate its efficiency and stability. The method is secondly tested 

on field examples from India and Germany. 

 

Interpretation of a Theoretical Synthetic SP Anomaly due to a Sheet 

Model with Random Errors 

A synthetic SP anomaly ( , , , , )
i

V x h a kθ ( 1,..., )i N=  due to a sheet-

like body is generated using the following assumed parameters: width of 

sheet 14a = unit length, depth centre of sheet 40h = unit length, 

inclination angle 0
50θ = and electric dipole moment 70k mV= . Two 

new theoretical SP anomalies are randomly regenerated, depending on 

the synthetic SP anomaly, by using the continuous uniform distribution 

with maximum random errors of 5% and 10%, respectively. The 

continuous uniform distribution is purposely used in order to randomly 

regenerate two SP anomalies resembling to real field data. 

Both regenerated theoretical SP anomalies are thereafter interpreted 

by the proposed interpretative method, where the SP  evaluated 

parameters are presented in Table 1.  
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Table  1. Interpretation of a SP synthetic anomaly due to a sheet model with 5% and 10% 

random errors.   

SP geophysical 

parameters 

SP assumed 

parameters 

SP evaluated parameters 

 with 5% random error  

SP evaluated parameters  

with 10% random error  

a   (unit length) 14 14.08 14.67 

h  (unit length) 40 39.68 39.47 

0
θ  

50 51.09 51.28 

k   (mV) 70 70.14 70.82 

σ  ( mV) - 0.011 0.020 

 

The results of Table 1 show a good agreement between assumed and 

evaluated SP  parameters, which consequently indicate the efficiency of 

the proposed interpretative method.  

 

Interpretation of SP Field Anomalies Due to a Sheet-Like Structure 

Two SP field anomalies due to a sheet model from India and 

Germany have been reinterpreted by the proposed method. 

1. The first field anomaly is presented in Fig.2; this anomaly of a 255 

m long profile is taken across a mineralized belt in Kalava fault zone, 52 

km south of Karnool in Cuddapah baisn, Andhra, Pradesh, India 

(Atchuta et al., 1982).  

The evaluated SP parameters of this anomaly obtained by the 

present interpretative inversion are: 

0
26.58 , 34.68 , 102.32, 69.75 , 8.01 .a m h m k mV and mVθ σ= = = = =  

The obtained results are shown in Table 2, which includes also the 

interpretation results obtained by (Atchuta et al., 1982) who used a 

Fourier transform method and by (Asfahani and Tlas, 2005) who used a 

constrained and penalized nonlinear least squares optimization method 

for the same SP field anomaly. 

It is to notice that the standard error σ of the proposed method (8.01) 

is approximately the same of that of (Asfahani and Tlas, 2005) and is less 

than that of (Atchuta et al., 1982), which obviously attests the accuracy 

of the proposed inversion.  
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Table  2. Interpretation of SP anomaly over a sulfide body in the Kalava fault zone, 

Cuddapah basin, India. 

SP 

geophysical 

parameters 

SP evaluated Parameters 

(Atchuta et al. , 1982) 

SP evaluated parameters 

(Asfahani and Tlas, 2005) 

SP evaluated 

parameters  

(present method) 

a   (m) 26.92 26.73 26.58 

h  (m) 28.55 34.74 34.68 

0
θ  110 102.59 102.32 

k   (mV) 63.68 69.50 69.75 

σ  ( mV) 10.97 8.09 8.01 

 
 

Fig. 2. SP field anomaly over a sulfide body in the Kalava fault zone (Cuddapah basin, 

India). The theoretical curve for our method is shown. 
 

2. The second field anomaly is presented in Fig.3; this anomaly of a 

520.5 m long profile is taken over a graphite deposit in the south 

Bavarian woods, Germany (Meiser, 1962) and (Abdelrahman et al., 

1999).   

The sheet evaluated parameters obtained by the interpretative method 

are: 
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0
51.84 , 48.72 , 51.10, 269.97 , 7.51 .a m h m k mV and mVθ σ= = = = =  

The obtained results are shown in Table 3, which includes also the 

interpretation results obtained by (Abdelrahman et al., 1999) who used 

an unconstrained least squares approach  and by (Asfahani and Tlas, 

2005) for the same SP field anomaly. The depth to the centre of the sheet 

obtained by the present method also agrees with the depth obtained by 

(Meiser, 1962), who used a double logarithmic net method (53 m). 
 

Table 3. Geophysical parameters interpretation of SP anomaly over a graphite ore body, 

southern Bavarian woods, Germany.  

SP 

geophysical 

parameters 

SP evaluated Parameters 

(Abdelrahman et al. , 1999) 

SP evaluated parameters 

(Asfahani and Tlas, 2005) 

 

SP evaluated 

parameters  

(present method) 

a   (m) 40.11 51.85 51.84 

h  (m) 51.05 48.73 48.72 

0
θ  49.5 47.83 51.10 

k   (mV) 363.6 269.88 269.97 

σ  ( mV) 12.27 7.68 7.51 

It is to notice that the standard error σ of our method (7.51) is less than that 

of (Abdelrahman et al., 1999) and that of (Asfahani and Tlas, 2005), which 

indicates clearly the accuracy of the proposed inversion. 
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Fig. 3. SP field anomaly over a graphite ore body, southern Bavarian woods, Germany. 

The theoretical curve for our method is shown. 



M. Tlas and J. Asfahani 110 

Geophysical Problem Formulation for the Case of a Cylinder or a 

Sphere Model 

The general mathematical expression for potential ( )T  for a 

cylinder or a sphere-like structure at any point on the free surface in a 

Cartesian coordinate system (Fig.4) is given by (Bhattacharya and Roy, 

1981) as follows: 

( )
( )

2 2

cos sin
( , , , , ) 1,...,i

i q

i

x z
T x z p q p i N

x z

ϕ ϕ
ϕ

+
= =

+

 

Where z is the depth from the surface to the centre of the body, ϕ is the 

polarization angle, p is the electric dipole moment or the magnitude of 

polarization, 
i

x is the position coordinate, and q is the geometric shape 

factor which takes values as follows: 

0.5

1

1.5

for avertical cylinder

q for a horizontal cylinder

for a sphere

⎧
⎪

= ⎨
⎪
⎩

 

Following the same procedure presented in the case of the sheet 

model, the evaluation of the geophysical parameters ( , , , )z p qϕ related to 

a cylinder or a sphere-like structure could be obtained by solving the 

following constrained, nonlinear programming problem: 
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The (CNPPS) model is converted to an unconstrained, nonlinear 

programming problem using the exponential penalty function, where the 

new model becomes as follows: 

               
5

( , , , , )

( , , , , )
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Subject to z p q

ψ ϕ σ

ϕ σ ∈R
                                (UNPPS) 

Where the objective function of (UNPPS) is: 
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The adaptive simulated annealing algorithm is then used to solve the 

(UNPPS) model in order to directly obtain the SP parameters 

( , , , )z p qϕ of the structure. 

 

 
              

Fig. 4. The diagrams for simple geometrical structures (sphere and cylinder). 
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Interpretation of SP Field Anomalies Due to a Cylinder or a Sphere-

Like Structure 

A SP field anomaly due to a cylinder or a sphere model from Turkey 

has been reinterpreted by the proposed method.  

The field anomaly is presented in Fig.5, this anomaly of a 262 m long 

profile is taken over a polarized copper ore body in Ergani district, 65 km 

SE of Elazig in eastern Turkey (Yungul, 1950) and (Bhattacharya and 

Roy, 1981).  
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Fig. 5. SP anomaly over a polarized copper ore body formation in Ergani district,Turkey. 

The theoretical curve for our method is shown. 

 

The evaluated SP parameters of this anomaly obtained by the 

present interpretative inversion are: 

0
35.41 , 17.76, 904.03 , 1.19, 15.47 .z m p mV q and mVϕ σ= = = − = =  

The obtained results are shown in Table 4, which includes also the 

interpretation results obtained by (Abdelrahman et al., 1997), who used 

an unconstrained least squares method, and by (Asfahani and Tlas, 2005) 

who used a constrained and penalized nonlinear inversion approach for 

the same SP field anomaly. 
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Table  4. Interpretation of SP anomaly over a polarized copper ore body, Turkey. 

SP 

geophysical 

parameters 

SP evaluated Parameters 

(Abdelrahman et al., 1997) 

SP evaluated parameters 

(Asfahani and Tlas,2005) 

 

SP evaluated 

parameters  

(present method) 

z   (m) 38.78 35.69 35.41 

0
ϕ  14.67 17.66 17.76 

p   (mV) -1549.36 -928.21 -904.03 

q  1.36 1.19 1.19 

σ  ( mV) 18.27 15.62 15.47 

 

It is to notice that the standard error σ of our method (15.47) is less 

than that of (Abdelrahman et al., 1997) and also less than that of 

(Asfahani and Tlas, 2005), which attests the accuracy of the proposed 

inversion. 

The geometric shape factor obtained by the proposed method 

( 1.19q = ) suggests that the shape of the buried structure resembles a 2D 

horizontal cylinder model buried at a depth of 35.41 m. The depth 

obtained by the proposed method agrees well with that obtained by 

(Yungul, 1950) ( 38.8 )z m= , (Bhattacharya and Roy, 1981) 

( 40 )z m= and (Abdelrahman and Sharafeldin, 1997) ( 42 )z m= ,  a priori 

assuming the buried body resembles a spherical target ( 1.5)q = . It also 

agrees well with the depth obtained by (Sundararajan and Srinivas, 1996) 

( 36 )z m= and (Shalivahan et al., 1998) ( 45 )z m= , assuming a priori 

the buried body resembles a horizontal cylinder target ( 1)q = .  

 

Discussion and Conclusion 

A practical interpretative inversion has been presented in order to 

interpret self-potential ( )SP field data due to simple geometrical 

structures (sheets, cylinders, spheres…etc). The method is proposed to 

determine the center depth, amplitude coefficient, and shape factor of 

buried structures. The inversion has been first tested on a theoretical 

model with different random errors of 5% and 10%, where a very close 

agreement was obtained between assumed and evaluated parameters. 
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Subsequently, field data from Germany, India and Turkey have been 

considered for reinterpretation. The agreement between the results 

obtained by the proposed inversion and other interpretative methods is 

good and comparable. The present inversion is based on the 

mathematical modeling concept and also on the stochastic optimization. 

It consists of three main phases: the first phase is to formulate the 

conventional nonlinear mathematical model under constraints imposed 

on the geophysical parameters, which describes the geophysical problem 

related to the studied structure. The second phase is to convert the 

constrained, nonlinear model to an unconstrained, nonlinear one 

(penalized model) by introducing an exponential penalty function. The 

third phase is to solve the penalized model by the adaptive simulated 

annealing, stochastic algorithm to determine the SP geophysical 

parameters due to the studied structure. In addition, most of the 

interpretative methods developed to interpret SP field anomalies assume 

a fixed simple geometrical model as a sphere, a horizontal cylinder, a 

vertical cylinder, or a sheet. In most cases, these methods consider the 

geometric shape factor of the buried body to be a priori assumed or 

predetermined. The problem of determining the geometric shape factor of 

a buried structure can be solved by using the present inversion, where it 

is considered as an additional free parameter to be evaluated. Moreover, a 

statistical criterion of preference (σ ) is used and applied on the 

interpretative results of three SP field data. This criterion indicates 

clearly the robustness and the efficiency of the proposed inversion. This 

inversion can be also easily generalized for interpreting SP field data of 

various geometries, knowing the suitable mathematical formula related to 

the data. Therefore, this easy and accurate inversion technique can be 

employed for routine analysis and inversion of self-potential field data.  
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Appendix 

 

The Adaptive Simulated Annealing Algorithm 

Simulated annealing techniques are implemented for finding global minimum (or 

maximum) of a target function in parameter space. The techniques are adopted from the 

physical annealing procedure where a liquid is cooled down in order to obtain a 

minimum energy formation. These techniques where developed due to the fact that 

stochastic and non linear systems are extremely difficult to be minimized. Stochastic 

methods such as adaptive simulated annealing (very fast simulated re-annealing) have 

been found to be extremely useful tools for a wide variety of minimization problems of 

large non linear systems.  

Adaptive simulated annealing is a powerful stochastic optimisation method 

applicable to a wide range of problems, especially for multi-modal, discrete, non linear 

and non differentiable target functions. The major advantage of adaptive simulated 

annealing over other methods is its ability to avoid becoming trapped at local minima. 

The algorithm employs a random search, which dos not only accept changes that 

decrease the objective function, but also accepts some changes that increase it, at least 

temporarily. 

The adaptive simulated annealing random search algorithm is here illustrated in 

solving the following multi-variables unconstrained problem:   
( )

n

Minimize v

Subject to v

φ

∈R

 

Where the numerical function ( )vφ  is called the objective (target) function of the 

problem and 
1

( ,..., ) n

n
v v v= ∈R  is the vector of model parameters (decision variables). 

Using function minimization for illustrative purposes, the algorithm proceeds as 

follows: 

The Algorithm 

Initialization: Let 

User-defined control parameters: 
0

0α > , 0r > , 0 n

t
+

∈R  

A user-defined initial solution: 0 n

v ∈R  

A user-defined small positive real number close to zero: ε  

An initial number of iteration: 0i =   

Main procedure: Repeat until (
i

α ε< ) 

Step 1: for 1j =   to n  do   

            { 

             Generate a random number u  between 0 and 1: [0,1]u random=  

             Set  ( )

2 1

1
sgn 0.5 1 1

u

i

j i

j

u t

t

θ

−⎡ ⎤⎛ ⎞
⎢ ⎥= − + −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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             Set 
ˆ

i

j j

r

v v

n

θ= +
 

             { 

Step 2: if ˆ( ) ( )iv vφ φ<  then set 1
ˆ

i
v v

+

=  and go to step 3 

                                      else calculate the probability 
ˆ( ) ( )

1

1

i

i

v v

p

e

φ φ

α

−

=

+

 

             if [0,1]p randomγ> =  then set 1
ˆ

i
v v

+

=   

                                                    else set 1i i
v v

+

=  

 

 

Step 3: for 1j =   to n  do   

            { 

                Set   
0

1

1

ji

j

t
t

i

+

=

+

 

            { 

            Set 0

1

1
i

i

α

α
+
=

+

 , 1i i= +  and go to step 1. 

End of the algorithm. 
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