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Abstract. A set of complete and orthogonal functions of nonsinusoidal
waveform, known as Walsh functions which assume only discrete
amplitude values of +1 and �1, are utilized for the analysis of magnetic
data.  Procedures are formulated using the Walsh transform for  inter-
preting vertical magnetic anomalies of (1) the sphere (finite depth
extent) (2) the horizontal circular  cylinder, and (3) the vertical sheet of
infinite depth extent.  The applicability of the method has been tested
on theoretical models.  The method is also applied on the famous
Kursk anomaly of a sheet of infinite depth extent, and the result is in
good agreement with other published techniques.  
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Introduction

Isolated potential anomalies are quantitatively interpreted in terms of the loca-
tion, depth, size, and shape of the causative source which constitutes an inverse
problem in the potential field theory. The solution of such a problem is ambigu-
ous and not complete either in theory or practice (Shaw and Agarwal, 1990).
This ambiguity is further reinforced by uncertainties involving limited number
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of observations and inappropriate separation of the regional and the residual
anomalies from the observed field data. The approximation of causative sources
by some simple geometrical shapes such as a sphere, a cylinder, a vertical thin
sheet, a prism, etc., or combination of these geometrical shapes are attempted to
resemble the real geology (Shaw and Agarwal, 1990).

Spectral analysis has been extensively used in every field of the geophysical
data processing and interpretation. Frequency-domain analysis has an advantage
over the space-domain analysis due to existence of a clear relationship of vari-
ous body parameters in the frequency-domain (Bhattacharyya and Leu, 1977,
Shaw and Agarwal, 1990).  

Since the magnetic field due to any dipole distribution is a periodic, which
analogies to mass distribution in gravity field (Shaw and Agarwal, 1990), its
spectral analysis involves domain transformation rather than its series decom-
position into component functions. Frequency-domain has been extensively
used during the last few decades that the Fourier transform (FT) has become
almost synonymous with spectral analysis. In general, any transform whose
kernel functions are a complete and orthogonal set can be utilized to decompose
a function satisfying Dirichlet�s conditions into its constituents (Shaw and Agar-
wal, 1990).  There is a set of complete and orthogonal functions similar to sinu-
soidal functions but rectangular in waveform with amplitude either +1 and �1
and is known as Walsh functions (Walsh, 1923). Walsh functions constitute the
kernel of the Walsh transform (WT). It is difficult to obtain the WT of a given
signal in closed form since Walsh functions are discontinuous in their domain
(Shaw and Agarwal, 1990). Therefore, the numerical solution can be obtained
by additive manipulation of the discrete data sequences. The application of FT
in potential field data interpretations (Dean, 1958; Odegard and Berg, 1965;
Bhattacharyya and Leu, 1977), some publications on WT (Gubbins et al., 1971;
Lanning and Johnson, 1983), the application of Walsh transforms to interpret
gravity anomalies due to simple geometrically shape sources (Shaw and Agar-
wal, 1990) and the density mapping from a gravity data using the Walsh trans-
form (Keating, 1992) have encouraged me to examine the feasibility of WT to
the problem of magnetic field.

This paper discusses the possible application of WT in interpretations of
isolated vertical magnetic field data over a sphere, a horizontal cylinder and a
vertical thin sheet of infinite extent. The magnetic fields due to these simple
models are subjected to Walsh transforms for computing Walsh power spectra.
Walsh spectra of these models are subjected to detailed and careful analyses for
determining the causative body's parameters.
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This analysis, is called as "sequency octave analysis" (SOA) after Shaw and
Agarwal (1990), does not employ the whole spectrum for interpretation.  It rather
uses some representative spectral points. The distribution of the Walsh power
spectrum in the sequency octave depends on the depth of causative sources. A
scheme based on the empirical relationship between depth and sequency has
been implemented to estimate the depth to the causative body.  

Theory

Figure 1 shows the first ten Walsh functions and their corresponding sinusoids
functions for comparison. The concept of frequency ( f ) as the reciprocal of time
period ( T ) for periodic function does not apply to Walsh functions because they
may not be periodic (Shaw and Agarwal, 1990). The sequency or generalized
frequency, is a term that has been proposed by Harmuth (1972) to describe a peri-
odic repetition rate that is independent of the waveform and is defined as one half
of the average number of zero crossing per unit time interval. Therefore, the
sequency and frequency are the same for periodic functions. However, for func-
tions not truly periodic sequency is a measure of average periodicity.

The set of Walsh functions can be generated from a difference equation
which uses lower order sequency functions to develop higher order ones (Beau-
champ, 1975, p. 21). Sequency order is preferable for communications and
signal processing such as spectral analysis and filtering (Beauchamp, 1975).
This is needed to identify some pattern in the amplitude and power spectra of
the WT of magnetic anomaly to determine the causative body parameters.

Walsh functions of higher orders can be found by higher orders from

WAL(2m + q,t) = (�1)[m/2]+q [WAL(m,2t) + (�)m+q WAL(m,2(t�1/2))] (1)

for 0 ≤ t ≤ 1

= 0 0 > t > 1

with WAL(0,t) = 1, 0 ≤ t ≤ 1, where q = 0 or 1 and m = 0, 1, 2, ... represents the
sequency order of the Walsh functions.  [m/2] means the largest integer smaller
or equal to m/2 (Beauchamp, 1975). Figure 1 shows that even numbered Walsh
functions are symmetric and odd numbered ones are antisymmetric with respect
to the midpoint of the interval (0, 1). This behavior is analogous to the rela-
tionship of cosine and sine functions, as introduced by Harmuth (1972) as

WAL(2m,t) = CAL(m, t)

WAL(2m � 1, t) = SAL(m, t) (2)

                          m = 0, 1, ... , N/2
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Fig. 1. The first ten sequency Walsh functions with their equivalent Fourier harmonics.
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Every function f ( t ) that is integrable in the Lebsque sense can be presented
by an infinite series of Walsh functions over the interval [0, 1] (Beauchamp,
1975, p. 40). The WT pair is defined as

        
The integration shown in equation (3b) can be replaced by summation using the
trapezium rule on N (N evenly spaced = 2n, n being a rositure integer) sampling
points {x(i)}and then the finite discrete Walsh transform (DWT) can be written
as

The Walsh power spectrum P(m) for the signal of finite data point {x(i)}can be
obtained as (Beauchamp, 1975, p. 100)

Thus, the WT of N point signal contains (N/2) + 1 spectral points.

Comparison of Walsh and Fourier Transform Properties

A comparison of Walsh and Fourier transform properties had been discussed
and summarized by Show and Agarwal (1990) and Beauchamp (1975, p. 72).
The relevant propositions to this work can be listed below.

Stability of power spectra: Walsh power spectra are invariant under dayatic,
and not cyclic, shifts whereas Fourier power spectra are invariant under cyclic
(linear) shifts of data sequences. However, it has been observed that a small
translational shift in the data with respect to a fixed origin generates practically
insignificant effects on the Walsh power spectra based on equation (5) Beau-
champ (1975, p. 45, 89).
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Time-domain properties: Convolution, correlation, etc., cannot be imple-
mented as in the Fourier transform in the frequency-domain without any linear
time-shift properties of Walsh transform in the sequency domain. However,
assuming dyatic time delay instead of a linear one, convolution and correlation
would have the same mathematical form in sequency domain as in the frequency-
domain. More work is needed to assess the advantage of the WT in identifying
such properties as earth signal with no noise (Shaw and Agarwal, 1990).

Computational efficiency: The computation of WT of N(= 2n, n is a positive
integer) real data using fast WT subroutine can be obtained from N × n simple
additions without involving any multiplication operation whereas through the
fast FT subroutine, the FT of the same signal requires N × n complex multi-
plications and evaluation of N/2 complex exponentials (Shaw and Agarwal,
1990).

Filtering operations: Bath (1974, p. 116) noticed that for digital filtering, the
"Walsh transform is superior in having no Gibbs phenomenon and not requir-
ing any special windowing in time-domain" comparing to FT. Beauchamp
(1975, p. 173) and Shaw and Agarwal (1990) stated that "The results of WT are
obtained in one-eighth of the computational time of the FT calculations and
give almost the same information" for a matched filtering example.  

Formulation of Problem

Formulation of the problem is utilizing the technique that was proposed by
(Shaw and Agarwal, 1990). The main objective of this paper is to examine the
capability of using the Walsh transform as a technique in magnetic data inter-
pretation to estimate the causative sources parameters. To implement this objec-
tive, there are two steps: (a) Computation of the Walsh power spectra of
magnetic fields over a few simple geometrically shaped causative sources, such
as, a sphere, a horizontal cylinder and a vertical thin sheet, with known body
parameters and then developing interpretation schemes using some pattern(s) of
the spectra.  This represents a forward problem. A sphere, a horizontal cylinder
and a vertical thin sheet are considered that their magnetic fields are given by
simple mathematical equations. (b) a suitable field data is analyzed by the
developed scheme for the interpretation. 

Sequency Octave Analysis

Figure 2 shows the Walsh power spectra of vertical magnetic anomalies over
a sphere, a horizontal cylinder and a vertical thin sheet. The distribution of
Walsh power spectra of vertical magnetic fields over the sphere and the hori-
zontal cylinder exhibits similar patterns which are different from that for the
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It has been observed specially in vertical thin sheet case that the spectral
peaks at a certain sequences Qj( =2 j  � 1, j = 0, 1, 2, ... , n � 1), which have been
also termed after Shaw and Agarwal (1990) as "sequency octave number" when
peak spectral power from each group is considered.  Figures 5, 6 and 7 show the
power distribution of the spectral points Qj which are related to the depth of the
causative sources. The analysis utilizes spectral power separated repeatedly by
one octave as 2 j-1 points on the sequency axis. Shawn and Agarwal (1990)
termed this process as "sequency octave analysis" (SOA).

vertical thin sheet. It has been observed that the maximum Walsh power spectra
shifts to the lower sequency number as the depth of the causative body increas-
ing. This maybe attributed to the low frequency wavelength content of an anom-
aly increases with depth. Therefore, a lower sequency number implies a longer
Walsh base function and this equivalent to a longer wavelength. It has been also
noticed that the distribution of Walsh power spectrum over a vertical thin sheet,
in magnetic case, shows generally the same pattern as shown over the sphere
and the 2-D horizontal cylinder in the gravity case (Shaw and Agarwal, 1990),
because the magnetic field over the vertical thin sheet model resembles line of
monopoles (Sharma, 1997, p. 88). The causative body parameters cannot be
interpreted by considering the whole power spectrum as a result of the random
behavior of the spectrum (Shaw and Agarwal, 1990).   

Fig. 2. Walsh power spectrum of residual anomaly of the vertical magnetic filed due to a
sphere, a horizontal circular cylinder and a vertical sheet of infinite extent of radius =
1 units, depth = 5 units and magnetic susceptibility contrast = 1 units. Values are in
arbitrary units.
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Figures 3, 4 and 5 show the sequency octave power spectra of the magnetic
fields over the sphere, the horizontal cylinder and the vertical thin sheet, respec-
tively. It can be seen from these figures that the sequency octave power spectra
exhibits more flatness of the octave spectra as the depth decreased. Thus, SOA
depends on the horizontal gradient of the signal.

Fig. 3. Sequency octave power spectra of magnetic anomalies due to a sphere (dipole) for
indicated depth values.

Fig. 4. Sequency octave power spectra of magnetic anomalies due to a 2-D horizontal cylin-
der (dipole) for indicated depth values.
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Fig. 5. Sequency octave spectra of gravity anomalies due to a thin vertical sheet for indicated
depth values. 

Interpretation Scheme

The observed signal is Walsh transformed and analyzed using SOA. Then,
the pattern using SOA is correlated with the body parameter of the source. The
sequency octave power spectrum shows a dependence on the data length and
hence cannot be used directly for depth estimation. This difficulty has been
solved by normalizing the sequency with profile length. This is done by fixing
the domain of normalized octave sequency (Q

�
0 = Qj/N) between 0 and 1/2.

Fig. 6. Plot of 
�
P ××××     

�
Q0 versus normalized octave sequency  

�
Q0 for a spherical causative body

showing the dependence of the peak position  
�
Qmax on depth as indicated on the curves.



T.A. Mokhtar148

The plots of spectral value P
�
(= P / Pmax) × Q

�
0 versus Q

�
0 for the spheres

targets of different depths, shown in Fig. 6, exhibit peaks at certain normalized
octave sequencies Q

�
max.  The value of  Q

�
max in this figure is govern by the

depth to the sphere.  An empirical equation 

Q
�

max × depth = 0.45 (6)

has been computed for depth determination. A similar equation for horizontal
cylinder is given by

Q
�

max × depth = 0.50 (7)

has been computed for depth determination.

 For a vertical thin sheet model, a plot of the spectral log2 P
� × log2 Q

�
0 versus

Q
�

0 for different depths is shown in Fig. 7, which reveals peaks at certain
normalized octave sequencies Q

�
max.  An empirical equation   

depth = (�ln Q
�

max  � 0.559) / Q
�

max (8)

has been computed for depth determination.  

The interpretation scheme based on the empirical equations for analyzing
field data is illustrated in Fig. 8.

To evaluate the applicability of any transformed domain such as this prob-
lem, I have examined carefully the effects of profile length and sampling inter-
val. These effects on the Walsh power spectrum by numerical computation. 

Fig. 7. Plot of log2  
�
P ××××     log2  

�
Q0 versus  

�
Q0 for a thin vertical sheet of infinite depth extent

for indicated depth values, showing the change in peak positions.
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Effect of Profile Length

The computed values of the product of normalized Walsh power spectra P
�

and normalized octave sequency Q
�

0 with octave number j for profile length
varying from 512 to 64 data points considering vertical thin sheet causative
source at a depth of five unites are shown in Table 1. The maximum amplitude

Fig. 8. Flow chart a generalized approach for depth estimation.
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Table 1. Effect of profile length on sequency octave analysis for a vertical thin sheet at a
depth of five units.

512 256 128    64

0 � � � �

1 0.60653 1.14643 2.13701 3.96379

2 1.24298 2.26554 4.08413 7.13812

3 2.36767 4.21694 7.24192 10.77973

4 4.30447 7.33836 10.8421 11.54810

5 7.39905 10.9049 11.6184 7.71650

6 10.9445 11.6750 7.81749          �

7 11.7090 7.87861        �          �

8     7.91216        �        �          �

Amax 11.95    11.9 11.8 11.7 
�Qmax 0.205 0.205 0.204 0.201

Computed depth 5.003 5.003 5.05 5.201

Actual depth 5.000 5.000 5.000 5.000

Effect of Sampling Interval

The computation for the same model for a fixed profile length of 512 units with
sampling interval equals to 1, 2 and 4 units are shown in Table 2. It is evident
from this table that for different sampling intervals, the value of Q

�
max changes

and the correct value of depth is obtain from equation (8) in the three cases.  

Field Example

The validity of the above procedure is demonstrated by the analysis of the
well-known Kurks anomaly (Fig. 9) (Werner, 1953 and Mohen et al., 1982).
The anomaly has been digitized at an interval of 23.4375 m. The discrete data
then have been subjected to Walsh transform and SOA. The Walsh power spec-
tral patterns are shown in Fig. 10. The patterns are closely resembling the
pattern due vertical thin sheet of infinite depth extent. The product of  log2  P

�  ×

Amax of  log2  P
� ×  log2  Q

�
0 and its corresponding normalized octave sequency

Q
�

max  are also tabulated. It is obvious from the table that a profile length of
25.6 times the depth value is enough to estimate the depth via SOA of the
Walsh power spectra.

log2  
�
P ×××× log2 

�
Q0 with unit sampling interval and

profile length of
Sequency

octave
number
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Fig. 9. The Kursk field anomaly.

log2  Q
�

0 versus Q
�

0 is shown in Fig. 11. The depth estimate to the top of the
causative body, using Equation (8), is 304.93 m by the Walsh transform which
agreed with the results obtained by Mohen et al. (1982) and Werner (1953)
(Table 3). 

Table 2. Effect of sample interval on sequency octave analysis for a vertical thin sheet at a
depth of five units.  

1       2        3       

0 �          �                     �      

1 0.60653 0.390106 0.322175
2 1.24298 0.948763 0.782793
3 2.36767 1.874387 1.493266
4 4.30447 3.366806 2.507065
5 7.39905 5.54117 3.62237
6 10.9445 7.39602 3.561439
7 11.7090 5.912035 �         

8 7.91216 �        �         

Amax 11.95 7.4 3.7
�Qmax 0.205 0.28 0.36

Computed depth 5.003 5.09 5.14 
Actual depth 5.000 5.000 5.000

log2  
�
P ×××× log2 

�
Q0 fora fixed profile length of 512

 units with sampling interval of
Sequency

octave
number
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Fig. 10. Walsh power spectrum of Kursk anomaly.

Table 3. Comparison between depth estimated from the present technique and other
authors. 

Method

Werner Mohen et al. Mohen et al. Kara et al. Present
(1953) (1982) (1990) (1998) technique

Depth (m) 282 304.69 301.22 291.00 304.93

Parameter

Fig. 11. Plot log2  
�
P  ×××× log2  

�
Q0 versus normalized octave sequency  

�
Q0 for the Kursk anomaly.
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Conclusions and Discussions

It was shown that, the Walsh transforms can be used for interpretation of
magnetic anomalies caused by bodies of some simple geometrically shapes such
as a sphere, a horizontal cylinder and vertical thin sheet. The Walsh power spec-
tra of magnetic fields due to assumed sources show a noticeable variations
which have been used to identify the shape of causative body. A methodology
for interpretation to estimate depth parameters based on the SOA is developed
which is independent of the data length of the field signal. The ratio of depth to
the data spacing is very important in the potential field data; therefore, the effect
of data interval shows insignificantly affecting the accuracy which can be
assumed relatively to the depth as 2 without affecting the accuracy of depth esti-
mation. The analysis of the field data of Kursk magnetic anomaly demonstrated
the applicability of this technique.  
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