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ABSTRACT. Spectral analysis approach using Fourier transform has
been developed for the interpretation of SP anomalies due to hor-
izontal cylinder and sphere like structures. Fourier amplitude and
phase spectra related to the SP anomaly are derived and analyzed in
order to adopt an interpretation procedure aiming at evaluating the
geometric and physical parameters of these two studied structures.
The validity of the new proposed method has been tested on synthetic
examples, where it has been found a close agreement between as-
sumed and computed values. A field example from the Ergani Copper
district, Turkey has also been analyzed and interpreted by the pro-
posed method, where an acceptable agreement has been noticed be-
tween the obtained results and other published results. 

KEY WORDs:  Fourier Transform, Self-Potential Anomalies, Spectral
Analysis.

Introduction

Self-potential (SP) method, which is one of the oldest geophysical methods,
plays an important role in the exploration of metallic sulphides Æ The quantitative
interpretation of the SP anomaly is carried out by approximating the causative
source to a simple body of regular geometric shape (viz, sheet, cylinder,
sphere ... etc.), applying one of the following methods:

1 � Using only a few characteristic points on the totality of the anomaly
curve, the methods, which were belonging to this category, were originally
developed by Yungul 1950, Paul 1965 and Bhattacharya and Roy 1981. The es-
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sential disadvantage of this method was related to the fact that only a few points
are used on the anomaly curve and hence the interpreted results are not reliable.
Taking into account that in most of the studied cases, the data was contaminat-
ed by noise. However, these methods were considered to be fast and suitable for
giving rough estimation.

2 � Using the curve matching technique Meiser, 1962, according to this tech-
nique, the field curve is compared to the album of pre-computed theoretical
curves. This process is cumbersoming and the complexity of the method is very
high when the variables are numerous and when the process deals with a large
number of anomalies.

3 � Using the least square method, the final solution could be found starting
from a supposed initial solution Abdelrahman, et al., 1997, Abdelrahman and
Sharafldin, 1997.

4 � Using nonlinear programming technique, recently Asfahani and Tlas
2002, have developed a new interesting method by which the convergence to-
wards the optimal solution is rapidly attained. 

In this paper, it is proposed to use spectral analysis approach, by which the
data is analyzed and interpreted in the wavenumber domain through employing
the concept of Fourier transform (amplitude and phase spectra).

In fact, in recent years, the Fourier transform has gained popularity to be
used for solving several problems in applied geophysics. This research extends
this spectral analysis technique to interpret the SP anomalies due to horizontal
cylinder and sphere structures. The characteristics of Fourier amplitude and
phase spectra related to these structures are investigated and analyzed, which
enabled to evaluate the parameters of the two mentioned structures.

Theory

In mineral exploration, the most polarized structures can be approximated
into four categories: the sphere, the horizontal cylinder, the vertical cylinder
and the inclined sheet. 

In this paper, efforts are concentrated on studying of the horizontal cylinder
and sphere structures only; Fig 1. The general equation, describing, the self-
potential anomaly produced by these structures is written in the following form
Yungul 1950, Bhattacharya and Roy 1981.
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where z : is the depth of the structure.    

U : is the polarization angle.
xi : is a position coordinate.
k : is the electrical dipole moment.
p : is related to the type of studied structure.

In this study, p is equal to 1 for a horizontal cylinder and to 1.5 for a sphere.
Putting xi = 0 in the equation (1), the following equation could be derived:

where V (0) is the anomaly value at the origin (xi = 0).

Setting equation (1) to zero, the following equation is obtained: 

Substituting equation (2) and (3) in equation (1), it can be found:

In all the mathematical formulas described before, the knowledge of the axes
of the self-potential have been assumed to determine V(0) and x0 Æ V(0) could be
evaluated by the intersect of the straight-line M1M2 with the anomaly profile
(where M1 and M2 are the minimum and maximum values of V(x)).

Using equation (4), a typical SP anomaly profiles over: 
1) Horizontal cylinder with z = 2 distance  units, θ = 15 degree and k = 1000 mV.
2) Sphere with z = 2 distance units, θ  = 15 degree, and k = 1000 mV.

FIG. 1. Cross sectional view of a horizontal cylinder and a sphere.
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Are computed for a profile length of 40 distance units and sampling interval
of 1-unit as shown in Fig. 2a and Fig. 2b. The zero anomaly distance x0 and the
anomaly value at the origin V(0) are also illustrated.
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FIG. 2a. The SP anomaly response V(x) over a horizontal cylinder obtained for z = 2 units, θ = 15
degree and k = 100 mV.

FIG. 2b. The SP anomaly response S(x) over a sphere obtained for z = 2 units, q = 15 degree and
k = 1000 mV.
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Fourier Transformation

The estimation of the parameters (z, θ, k) in the case of horizontal cylinder
and sphere like structure where p = 1 and 1.5 respectively is the goal of this
research work by applying Fourier transformation. Therefore the characteristics
of Fourier transformation are theoretically investigated and analyzed for p = 1
and p = 1.5.

1) Horizontal Cylinder (p = 1)

The Fourier transform F(w) of the SP anomaly V(x), in continuous form, is
given by:

Replacing equation (4) in equation (5), it can be seen:

The Fourier transform F(w) is evaluated and obtained as: 

F(w) = R(w) + i X(w) (7)

Where R(w) denotes the real part of F(w) and is given by:

R(w) = π V(0)  z e�wz (8)

And X(x) denotes the imaginary part of F(x) and is given by:

The Fourier amplitude spectrum A(w) and phase spectrum φ (w) are math-
ematically defined as:

And

Substituting R(w) and X(w) explained in equations (8) and (9), in equations
(10) and (11), the following mathematical expressions are easily obtained

(5)
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and (13)

The analysis of the properties of both A(w) and φ (w)  in the equations (12)
and (13) allows to evaluate the horizontal cylinder parameters (z, θ, k).

The Fourier amplitude spectrum A(w) in equation (12) is an exponentially de-
caying function.

Taking natural logarithms on both sides of this equation, the following equa-
tion is derived:

As known:

Where N is the number of profile points. Substituting this equality in equa-
tion (14), it can be seen:

Equation (16) indicates that, the slope of A1(s) as a function of s is a straight
line at higher frequencies, Fig. (3). The absolute value of this slope is denoted by
m, this value allows determining the depth z of the horizontal cylinder as follows:
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FIG. 3. Theoretical amplitude spectrum A1(s) for the SP anomaly shown in Fig. 2a.
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The analysis of phase spectrum φ (w) explained in equation (13), permits to
evaluate the angle θ at higher frequencies by using the equation (3) discussed
previously as follows:

θ = 90 � arctg [ � φ  (w)] (18)

2 � Sphere (p = 1.5)

The theoretical Fourier transform in the sphere case where p = 1.5 is not easy
to be analytically obtained. Bessel and modified Bessel functions are required in
such a case, which complicates considerably the solution.  Therefore the Fourier
amplitude and phase spectra are evaluated by using discrete Fourier transform
(DFT). The suitable DFT algorithm used in this research has the following form:

and

A1(s) = 1n A(s) s = 1, ... , N (20)

The absolute value of the slope of A1(s)  in such a case, Fig. 4 is given by the
following empirical extrapolated equation:

Equation (21) gives a good approximation concerning the depth z of the
sphere center as illustrated by the synthetic examples analyzed in the models
4,5 and 6 shown in Table  1.

TABLE 1. Synthetic examples k = 1000 mV, profile length = 40 distance units, sampling interval =
1 unit.

Model Assumed parameters Evaluated parameters Percentage of error in %

number P z θ z θ k z θ k

1 1   2 15 2.0045 15.0267 1000.55      0.229    0.178 0.055  

2 1   4 30 4.005  29.893  1004.51      0.1275   0.354 0.4506

3 1   6 75 5.981  75.35    995.253   0.313    0.467 0.4746

4 1.5 2 15 2.0324 16.966    915.9308   1.62    13.106 8.4069

5 1.5 4 30 4.013  30.963    978.1739   0.325  3.21 2.1826

6 1.5 6 75 6.022  75.963  1002.968    0.366    1.284 0.2968

The angle θ could be also evaluated by the same manner using equation (18)
discussed previously.  
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FIG. 4. Computed amplitude spectrum A1(s), obtained by DFT for the SP anomaly shown in Fig. 2b.

FIG. 5. Computed amplitude spectrum A1(s), obtained by DFT for the SP anomaly shown in Fig. 2a.
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Examples

I � Synthetic examples

Various cases including horizontal cylinder (p = 1) and sphere (p = 1.5) mod-
els are analyzed and tested as shown in Table 1. The discrete Fourier transform
for each anomaly model is computed using the fast Fourier transform for a pro-
file of length 40 distance units digitized at 1-distance unit intervals.

Fourier amplitude spectra A1(s) have been computed for the model (1) pre-
senting a horizontal cylinder and for the model (4) presenting a sphere structure
as shown in Figs. 4 and 5 . It is to notice on these two figures that the logarithm
Fourier amplitude spectrum A1(w) is a straight line in the high frequencies re-
gion having the absolute value of slope (m) of 0.0492 and 0.0352 respectively.
Depending on the equations (17) and (21), these obtained slopes allow
determining the depth of horizontal cylinder and sphere structures as equal to
2.0045 units and 2.0324 units respectively.
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The phase spectra φ (w) of the Fourier transform are computed for the same
two models (1) and (4), as shown in Figs. 6 and 7. Depending on the equation
(18), the polarization angle θ for the horizontal cylinder structure is obtained as
equal to 15.0267 degree, whereas, this angle is equal 16.966 degree in the case
of sphere presented in model (4). 

In all the studied cases (Table 1), it is evident the good agreement between the
assumed and evaluated parameters. This agreement proves the validity and the ef-
ficiency of the spectral analysis proposed for the interpretation of SP anomalies.  

II � Field Example

Fig. 8 shows the Suleymankoy self potential anomaly, Ergani copper district,
65 km SE of Elazig in eastern Turkey  Bhattcharya and Roy, 1981. The SP

FIG. 7. Computed phase spectrum φ(s), obtained by DFT for the SP anomaly shown in Fig. 2a.
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FIG. 6. Computed phase spectrum f(s), obtained by DFT for the SP anomaly shown in Fig. 2a.
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measurements were performed and described in Yungul 1950. They represent
the anomaly as a result of a polarized copper ore body. The SP anomaly has
been digitized over a length of 262 meters at 1-meter intervals, and subjected to
a spectral analysis using Fourier transformation. The interpretation of this
anomaly is carried out in two cases, where p = 1 and p = 1.5. The logarithm
Fourier amplitude spectrum A1(s) of the anomaly curve is shown in Fig. 9. The
absolute value of slope of this spectrum is equal to 0.0354 that allow de-
termining the depth z corresponding to the horizontal cylinder and sphere like
structures according to the equations (17) and (21).

FIG. 8. SP anomaly over a polarized copper over body in Ergani-district, Turkey.  The theoretical
curves generated using the evaluated parameters are also shown.
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The model parameters determined in the case of horizontal cylinder (p = 1)
are z = 1.47785 units (1-unit = 18.8 m), θ = 17.25 degrees and k = 920.63 mV.
The model parameters evaluated in the sphere case (p = 1.5) are z = 2.09 units
(1-unit = 18.8 m), θ = 17.25 degrees and k = 1841.27 mV. The results of this in-
terpretation using spectral analysis are presented and summarized in Table 2. 

         TABLE 2. Results of analysis of the SP anomaly over Ergani district, Turkey.

        Evaluated parameters P = 1 P = 1.5

Depth z in units 1.47785 2.09
Polarization angle θ in degree 17.25 17.25
Electric dipole moments in k in mV 920.63 1841.27
x0 in units � 0.45888 � 0. 64896

Using these evaluated parameters for p = 1 and p = 1.5, the theoretical pro-
files have also been generated for direct comparison as shown in Fig. 8.

It is obviously clear, that there exists an acceptable match between the ob-
served and the computed anomalies for p = 1 and p = 1.5. The comparison
between the two computed anomalies for p = 1 and p = 1.5 is carried out
through studying of the following error function (Standard error): 

    Where N is the number of observation points. Li (i = 1, ... , N) and  V(xi, z, θ,
k)  are the observed and evaluated SP respectively. This computed error func-
tion are equal to 101.3 and 25.4 for p = 1 and p = 1.5 respectively. This in-
dicates that the shape of the source resembles a sphere or practically a 3-D
source with a hemispherical roof and depth to the center of 2.09 units (1-unit =
18.8 meters). The interpretation results obtained by the proposed method agree
with those obtained by Yungal 1950, Bhattacharya 1981, Shalivahan et al.
(1998), and Abdelrahman and Sharafeldin 1997 as shown in Table 3.

Summary and Conclusions

Spectral analysis approach using Fourier transform has been developed for
the interpretation of SP anomalies due to horizontal cylinder and sphere like
structures. Fourier amplitude and phase spectra of the Fourier transform have
been given for the two studied structures. The proposed method is well validat-
ed with synthetic data, where a close agreement has been found between the as-
sumed and evaluated parameters. The application of this method to a field data
taken from Tureky resulted in good agreement between observed and computed
anomalies for p = 1 and p = 1.5. The comparison between these two computed
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anomalies based on the studying of error function indicates that spherical model
is more adapted to represent the observed SP anomaly. As a conclusion result,
the proposed method gives reasonably good results, and an idea about the shape
of the structure responsible of SP anomaly. Therefore, this method can be used
for the interpretation of SP anomalies related to the horizontal cylinder and
sphere like structures.

TABLE 3. Interpretation of SP profile (anomaly profile after Yungul, 1950). Comparison of results
for sphere and horizontal cylinder like structures.

     
Evaluated Yungul Bhattacharya Shalivahan

Abdelrahman
PresentModel     

parameters (1950) & Roy (1981) et al. (1998)
& Sharafeldin

study(1997)

   Sphere          z in meters 53.8 54 51 42 39.3
     θ in degrees 26 30 30 13 17.25
     k in mV � � � 2458 1841.27
     x0 in meters � 32.5 � 30 � 30 �9.4 � 12.2

   Horizontal      z in meters 43 38.8 45 � 27.78

     cylinder      θ in degrees 21 15 23 � 17.25
     k in mV � � � � 920.63
     x0 in meters �10 �16.7 �12 � �8.63
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