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Mass Spectrum of Heavy-Quark Hadrons
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ABSTRACT.  The spectrum of (he upsilon meson system T consists of bound

states of a bottom quark # and anti-bottom quark & called bottomonium.
Upsilon is a massive meson of about 9.46GeV. It was discovered by resonance
peaks produced at certuin energics in experiments involving the production of
lepton pairs. And the higher energy peaks are the excited states of 1.

In this work, we calculate the mass spectrum of this system, by using Dirac
equation, which is a relurivisue equation. and holds for spin 172 parucles. We
assune (wo suitabie models of interaction potentials between the constituent
quarks of T system The prohlem is solved by using WKB-method.

We develop a computer progran to obtain the energy ergenvalues for differeul
values of K quantum number and forn =0, |, 2 and 3. Finally, we compare our
results with experimental values, w show a good agrecment especially
fock =1

1. Introduction

The recent advent (1995) of the heavy quark called t-quark (top quark} is a great success to
the quark theory of elementary particles inviting ncw research projects that could be
developed for deep investigation of the origin of matter.

The quark model was introduced by Gell-Mann and Zweig (1964). The biggest success
of the quark model was the discovery of the Omega minus ( €7) particle which was
predicted previously by this model. Since then this model has becn developed by many
scientist. In literature one linds scveral attempts of describing hadronic propertics in terms
of the interaction between quarks uvsing the Schrédinger equation (Arafah,1981; Gue,
2003, Manohar et al., 2000). On the otber hand the quarkonium system may be solved
rclativistically as a onc-body problem by solving Dirae equation with a linear scalar
potential using the method of infinite series, 1n which case there appears a three-term
recursion relation.

Ram and Halasa (1979) applied the same method of infinite series to a quadratic scalar
potential which leads to a four-term recursion relation. The solution of the four — term
recursion relation gave complex energy eigenvalues for the quadratic scalar powential, Ram
(1980) pointed out that when the Dirac equation 1s transforined to an equivalent
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Schrédinger equation, the lalter gives real cnergy cigenvalues for the quadratic scalar
potential just as it docs for the lincar potential.

In recent years, much work has been done in this ficld. For cxample, Casanova (2001)
studied the quark-quark correlatton using Dirae equation. Gue Jian-You (2003) solved the
Dirac equation with special potential. Also Avila (1999) worked on solutions of a Dirac H-
like meson and scalar conlincment potential for low angular momentum state.

In the present work we study the energy eigenvalues resulting from Dirac equation with
scalar potential using the WKB method. In particular. we calculate the energy cigenvalucs
for the upsilon system Y . which is a bound state of a b-quark and anti b-quark.

2. Solving the Dirac Egnation with a Scalar Potential

With the customary definition of Dirac matrices & and f , (he Dirac equation is given
by:

Hy ., =& p+ ﬁm(r)]y/ﬁw L AD
where i = ¢ = 1 and the spinoris
'Wfl 1 l F (.r") }:{(J.HJ
w,'ruru: = _ (2)
Vi i(r (r) },’ .
wilh
miry=m+V (i U R)]

V. represcnts a scalar polential and £ is the reduced mass.
In cquation (2}, j denotes the total angular momentum operator

o oo .
h=j+zo, !_\—‘;r;w and =11 | . (4)

Using the standard procedure, 1t is straight forward (o show that the eigenvalue equation
Hy . =FEw ., scparates into the two following coupled equations
(E=-mOUNFN+G (- +112}/nGry=0.

.. {5)
(E+nr(r)}G(r}—-F'(r}-—((_,i+ Vi 2w/ {ry=0, l

: - I : :
in order (o be able (o use cquation (5) tor both cases (¢ = j + - ). 1L is convenient Lo write
ol

1 L 1
(,-'+? ={+1 _I(Jp’_}—f“f?

= _l ]‘ ... (B
—(.i+5)=—f' ﬂ’”'izf_g

The number & takes all integral values cxcept zero, the positive numbers corresponding o

oo . o .
the case (/= j + 3) and negative numbers (o the case (} = ;j — ). Introducing
. 2

Firy=ry and Giry=ry,, oA
and using eqs.(6) and (7) we obtain

) T+ :
(E~mirny, + i{f’._.+ X v, =0, .o (8a)
dr r
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diy +K—1
dr r

where ¢, and g, arc called the large and small components of the spinor (2) and
m(ry=p4+V (r).

The transformation

(E+m(ry, - v, =0 . ... {8M

% A S ... (9a)

' Y + U+ E ’

ry,

SN Ty

transforms equations (24a) and (24b) into the following sct of cquations,

(9b)

dj Xl ]
U -1 =V Yy =0, .. (10)
dr
(4,2 + 1 3 3
#HE'—#'—V;,J% = ... (10b)
dar
with
— . V/o+2Vi(x/n) 3 (VY
Vt,'”:K(K, )+V"+2,UV‘ 12 ‘(K' N3 ¢ - .. (D
r 2 (u+V.+E)  4u+V +E)
and
Vi (K, EY=V, (-x.—E). (1)

In equation (11) primes mean differentiations with respect to r.
The energy eigenvalues E in equation (10a) have been obtained by using the WKB
method,

f’k(.r)dx:(m%);r, n=0.1.2. . )

where k(x) is the wave number.

3. Potential Models and Calculation

In this section two scalar potential models were studied using the Dirac equation, to fit the
cnergy levels of the Upsilon system (bottomonium) applying the technique developed
earlier.

The Upsilon system Y is a bound state of a bottom quark and anti-bottom quark 5 ,
quarks with charge 1/3 and mass 4.5 GeV. Various excited states (resonances) of this

system can be created in ¢” ¢” experiments at certain energies.

Model I
In the first model we assumc a lincar potential plus the Coulomb potential:
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V.=A4Ar-alr+e¢ . (14)

where 4, , & and ¢, are the polential parameters.

With this potential V), equation (11) reduces to

i

P r

( 2a,, (hralr) )
1

x-1 (2 S o
V‘?‘IH = K(rz )'f'(/l F—':'H‘I)_ +2‘L"(/1 ;-_?_H'.[)_

2 (E+utAr—alr+c). (15)

+§ A+airy
dE+u+Adr—alr+cy

V(,'ﬂ for this potemial for certain cnergy is shown in Figure (1), the curve shows thal we

have a bound state system.
The cquivalent Schrodinger equation with this potential is

By

Y2y =0 . . (16)
dr

and it is solved by using thec WKB method
] 1
rk;,(r}dr:[n+5]}r, n=0172..., .o D
where a and b are the roots of &, (r) =0. and
.- N
k.‘: (F):(E —#H - Vrf.' }

3
r r

2 (EHiHAr-ar+e)

[ 2 +2A"——(’I'+m';) ]
1

a K;D +A < +) +2y(,ir—£r +)
r r r

3 Grary
’ 4(E+ﬂ+;i,r—(1:/r+t,)3

(18)

|
The quantity k;,'(f‘) for this potential model at certain encrgy 15 shown in Figure(2) .
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V() (Gev)

iGeV "

Fig. 1. V!'ﬂ with scalar potential V. = A r —a /r + ¢ . represents a bound stale system, lor X' =-1, n=1.
and E = 9.8599 GeV

Fig (2} k; () with scalar powentiad V= Ay —a/r+¢ . shows the roots aand h, Tor X'=-1.n=0.and L =
D.8599 GeV.

We calculate the encrgy eigenvalues for £ &, the results are shown in Table (1)
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Table (1). Mass spectrum for pp systems resulting from the Dirac equation for the levels |x|<3and n=0,
[, 2, and n=0, (, 2,und 3. E represents our solutions with V = Ar-a/r+c, when my = 4.5 GeV.
;L|=3‘9 GeV?:, =001 and ¢,=5.1GeV, where the values of a and h are the roots of ,tff(,-) . And E
(Aralah) represents the sofutions when m, =4.94 GeV. £ =0.0771GeV:, a=0.473.

A=39GCeV:, a=0.01,¢,=5.1GeV
E E (Arafah) (Experimental enerj
K n|a b {Present work) | Previons work Gc\l; ¥
| GeV. GeV. )
0 [ 0.0080 | 0,513 [ 9.3099 {92527 9.46030 ]
I 1] 0.0075 | 0.70 10.0418 10.033 10.02326
21 0.,0072 § 0.803 | 10.4600 10.4023 10.3552 ]
3 00070 | 0.881 ] 10.7675 10.6745 10.5800
010279 | 0602 | 100142 0.9133 9.8599 N
1 110235 | 0748 [ 104621 10.3104 9.8927
210215 | 0841 | 107797 10 53946 99126
310202 08131 11.0322 10.8259
010272 | 0,597 | 9.9502 9.8856 10,2321 N
2 U] 0228 107451 104142 1412926 10.2552
210209 | 0.839 | 10.7395 10.5802 L0 2685
3] 0,097 | 0810 | 10,9968 18170
r; 010443 | 0703 | 107124 10.2158
2 L {0388 | 0819 [ 109876 10,5107 I8
20359 | 0899 [ 11.2133 10,7526
310340 | 096l § 11.4067 10.063%
0 | 1435 (1,696 | {16360 10,2052
3 I | 0380 | OBI4 | 109226 10,5022 |
2] 0352 (.894 | 11.01557 10,7451
(3] 0333 [ 0957 [ 11.3543 10.9570)
[ [0 o383 Tosoa 13735 10,4232
3 1] 0,525 | 0901 | 11.5524 [ 106727
; 210493 (0868 | 117122 | 10.8894
3| 0470 L.O23 | 11.8566 11,0844
Model I
in the second model we assume a quadratic potential plus the Coulomb potential:
V.:/Lr:—(rfrﬂ'_} e D
Where A, . @ and ¢, are the poienlial paramelers.
V., equation (1 1) reduces to
(22, 2kt
_X(x—1) oo r

V i

ety T 2
r

> ) : I
+(A, r —g—+v3}‘ +2u(A r —g—ﬂ'j)a—
r F “

(£ +A.r° Lz +o. + U
;

3
-+__

HE+ A ey
r

({—{+213 ry
I~

(20)
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Ve:f for this potential for ccrtain energy is shown in Figure (3), the curve shows that we

have a bound state system.

The equivalent Schrédinger equation with this potential is

I )
ﬂ+kq‘ﬁ(r)y/1=0 .o 2D

2
dr

Again, it is solved hy using the WKB method

f’kw(r)dr:[n%]x, n=0,12.., . (Q2)

where a and b arc the roots of &, (r) = 0. and

ko dr=(E-pg- vy )"

Ty ett

5 \ 12
21 2?'+2K(2r}f:+(rfr) w
KU K=1) Sor

’

r J

+(A,r’ —a+c:)3+2,£,1(/'f2 f'z—(—r+c'_,)——l
! ! E+A P =Zae 1)
r

(i’f +24, ry
&

+=
Y E +A, 1 —qﬁ.-g +i)
r

(23)

Also, k;‘ (r) for this potential moedel at certdin energy is shown in Figure (4).
We also fix the paramcters A4, ,&randc,: and apply the same technique as ahove to
ealculate the energies for this set of the parameters. The results are shown in Table (2).
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Fig. (3). ‘VJ',I with scular polential V, = Agrl —wr/r+c,, represents a bound state system, tor XK'= -1, n =10,

and E = Y4.8599 GeV.

R10r) (Gev'?

i

Fig. (43, k- {r) with scalar potemial v, = At —atr+c,.shows the roots a and b, for K=t n=0GudE=
o LT :
98509 GeV.
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Table (2). Mass speetrum for b b systens resulting from the Dirac equation for 1he levels |x]<3and n =10,
1, 2, auwd 3. L[ represerts  our  solulions  with V. :,{:H —alr+c, when my, = 4.5 GeV,
A.=39GeV", a=0.01 and ¢,=6GeV. where the values of a and b are the roots of %° (r) . And E
(Arafah) represents the solutions when m, =4.94 GeV. 1 =0.0771GeV", a=0.473.

A,=3.9GeV’, a=0.01,c,=6GeV
E (present work) E ‘AT"’“"’J Experimental energy
K |n|a b oy Previous work
GeV. . GeV,
GeV,
0| 0.0094 | 0.524 | 32693 92527 9.46030
1 1 | 0.0D84 | 0685 | 10.0398 10,033 1002326
21000709 | 0775 | 10,5560 104023 10.3552
3000075 | 0840 | 10,9683 10.6745 10,5500
0| 0.295 (.59 | 9.9653 99133 9.8599
1 1| 0.241 (.724 | 10.4985 10.3104 9.8927
20215 (L8002 | 109195 10,5646 99126
300099 | 0861 | 11.2767 110.5259
0] 0.294 | (0.599 | 99030 9 ER50 14,2321
5 1] 0240 | 0724 | 104425 10,2626 10,2552
210215 0802 | 108677 10,5802 H).2685
310198 0861 | 11.2281 118170
010430 | 0673 | 10,6089 OISR
2 1] 0.371 0774 | 11.0818 115107
2| 0.339 0841 | 11.4144 [{17526
370316 | 0893 ] 117118 10.963% T
00430 | 0.673 | 106076 10324152
3 L] 0370 | L7733 ] 10,9969 10,5122
2 10338 | 0.840 | 11.3345 10,7451
30316 ORUZ | 11 635Y {09570
(| 1.536 0.743 | 11.4486 104232
3 I ] 0478 | 0827 | 117377 10,6727
) 2 | 0444 | 0.8BS | 120023 10,8394
3 G420 0931 | 122473 11.0844

4. Conclusion

From the calculated energies of model I, which are listed in Table (1) we [ind the
following. We have a good agreement between the theoretical resultts and the cxperimental
results for & =1 in the states n = 0, |. 2 and 3. with average percentage error 1.14 9%, for
x =—1Iin the state n = 0, with percentage crror 1.5%, and for & =2 in the states n = 0, |
and 2, wilh average percentage crror 2.15 %.. But we do nol have a good agreement
hetween the theoretlical results and experimental resuits for x =—1 in (he states n = 1, and
2 with average percentage error 7.25%. For x=-2,3,-3., we compare our presenl results
with previous theoretical results, and the average perecentage error is about 5.3%.

Figurc (5) shows the mass spcetrum ot the bb system of the potential model [ compared 10
the experimental values.
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From the caleulated energies of model 1, which are listed in Table (2) we find the
following. We have a good agrcement between the theoretical results and the experimental
results for x =1 n the states n =@, 1, 2 and 3, with average percentage error 1.95 %, for
k =—11n the state n = 0, with percentage error 1.07 %, and for x =2 1n the states n =0,
and 1 with average percentage error

2.5 %. But we do nol have a good agreement between the theorclical results and
experimental results for ' =-1 in the states n = |, and 2 with average percentage error
8.1%, and for x = 2 in the state n = 2 with average percentage error 5.83 %.

For x=—2,3.and —3, we comparc our present results with previous theoretical results,
and the average percentage crror 1s aboul 6.9 %.

Figure (6) shows the mass spectrum of the bb system ol the potential model Il eompared
to the experimental values.

From above discussion we conelude that the two assumed models of the confining
potentials of bb meson fit the cigenvalues and (he corresponding mass spectra very well
with the experimental data, and the predicted energy levels for x=-2,3,and —3give a
good agreement with other values obtained {rom different quark binding poteutials.

Dirae equation is uscful to study heavy-light mesons aud 1o describe them as an atom-like
system. Beside this advantage, Dirac cquation may describe any composite system with
any number of constituents, such as baryons.
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Fig. (5). Mass spectra for bb system resulling from the Dirac equation in potential model 1 Vo=Adr—alr+

¢horizontal lines) compared 1o the experimental values and previous results based on Table (5-1).
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Fig. (6). Mass spectra for  sf system resulling from the Dirac equation in potential model 11
v =Ari—a/r+e, thorizongal lines) compared o the experimental values and previous results based on

Table (7).
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