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A new methodology is proposed to handle multi-scale heterogeneous structures. It can be
of importance in the field of hydrogeology and for petroleum engineers who are interested in
characterizing subsurface heterogeneity at various scales. The framework of this methodol-
ogy is based on a coarse to fine scale representation of the heterogeneous structures on trees.
Different depths in the tree correspond to different spatial scales in representing the hetero-
geneous structures on trees. On these trees a Markov chain is used to describe scale to scale
transitions and to account for the uncertainty in the stochastically generated images.

We focus in this work on the description and application of the methodology to synthetic
data that are geologically realistic. The methodology is flexible. Conditioning on field data
and measurements is straightforward. Non-stationary and stationary fields, compound and
nested structures can be addressed.
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1. Introduction

Characterization of the subsurface that incorporates the dominant features of the
geological heterogeneity at the significant scales of variability is essential in the field
of groundwater hydrology for predicting the spreading of contaminants. It is also of
great importance to petroleum engineers to improve oil recovery. Extensive studies have
been devoted to mono-scale heterogeneous structures based on the theory of stationary
random fields [16]. Reviews of these methods are presented in the literature of hydroge-
ology (see, e.g., [13]) and in the literature of petroleum engineering (e.g., [4,11,18]).

It has also been proposed to apply the concept of fractals to model phenom-
ena which possess self-similarity over all scales (see, e.g., [1;18, chapter 19]). How-
ever, in real formations one often encounters different geometrical shapes with different
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anisotropy structure at each scale (e.g., a sedimentological bedform such as small-scale
laminations, cross-beddings, ripples and dunes embedded in a large-scale stratigraphic
architecture). Examples of this type of heterogeneity are presented in many outcrops
(see, e.g., [15]). Some studies tried to handle this type of heterogeneity using a hybrid
approach (see, e.g., [11]). In this approach, the discrete geological attributes (facies)
are modeled using indicator geostatistics, while the microstructures are treated in a con-
tinuous sense within the individual facies using Gaussian random fields. This hybrid
approach has been adopted by many authors (see, e.g., [6]). It enables one to character-
ize variability at two different scales, the so-called macro- and mega-scales [17]. It has
been applied to study the influence of geological and parametric uncertainty on solute
transport predictions [10].

The motivation of the current research stems from the fact that natural formations
exhibit different geometrical shapes at a multiplicity of scales with different structural
anisotropy patterns at each scale. To the best of the authors’ knowledge, there is no sys-
tematic methodology that can characterize this type of multi-scale heterogeneous struc-
ture with different geometrical patterns and bedding type at each scale. The framework
of the methodology described in this paper is based on a coarse to fine scale represen-
tation of the heterogeneous structures on trees. Different depths in the tree correspond
to different spatial scales in representing the heterogeneous structures. On these trees,
an inhomogeneous Markov chain is used to describe scale to scale transitions and to
account for uncertainty in the heterogeneous system over all scales. Such a framework
provides the link between the geological description of the reservoir and the hydrody-
namic model of interest to a reservoir engineer. This link will be considered in future
work. The work presented here describes the proposed methodology and demonstrates
some of its applications on synthetic data.

2. Basic definitions and terminology

2.1. Quad trees

Quad trees are hierarchical data structures used to represent spatial data or images.
They are based on the principle of recursive decomposition of an image into its cor-
responding scales. Each level in the hierarchical structure corresponds to a particular
spatial scale and each node at a given scale is connected to a node at the next coarser
scale and to several descendent nodes at the next finer scale. This type of representa-
tion is commonly used (see, e.g., [14]). A 2-dimensional image with 2K × 2K pixels
consists in a natural way of K scales (levels). At a particular scale or level LM , where
0 � M � K, the corresponding number of grid cells at this scale is 2M × 2M . There
is a factor 4 between the number of grid cells at each scale and the previous coarser
one. This yields the quad tree structure over all scales of an image. The procedure is
simply based on the successive subdivision of an image into four equal sized quadrants.
In case of binary images, which contain only black (B) or white (W) pixels, if the image
does not consist entirely of blacks or entirely of whites, it is declared gray (G) and is
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Figure 1. Quad tree representation of an image: the top illustrates the tree description of an image; the bot-
tom shows the scale resolution of an image with 32×32 pixels (scales M = 0, 1, 2, 3, 4 and 5, respectively,

from left to right).

subdivided into quadrants, subquadrants, and so on, until blocks are obtained that con-
sist entirely of blacks or whites. The idea of using quad tree representations of binary
images has been used earlier in [3] to characterize lung scan images. Figure 1 illustrates
the method.

In general, a tree is a connected graph without loops or cycles and with a distin-
guished vertex that precedes all other nodes in the tree and which is called the “root”.
It is denoted by the symbol 
, and corresponds to level M = 0. In general, a node
with its four descendents is called the “father”, respectively the “children”. Each child
represents a quadrant (labeled in order NW , SW , NE, SE) of the region represented by
that node.

2.2. Tree-indexed Markov chains

Images can be randomized by randomly labeling the corresponding quad trees.
A natural way to accomplish this is by using a Markov chain. A Markov chain on the
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tree describes a scale-to-scale transition. Formally this should be called a tree-indexed
Markov chain. For vertices u and v on the tree, one can write u � v if u is on the unique
path from v to the root 
.

The set of vertices of the tree will be denoted by T . For any vertex w in T which
is not the root 
, we denote the father of w by

←
w, i.e., the unique vertex connected to w

with
←
w � w. For any v ∈ T we let T (v) be the subtree of T with v as its root, i.e.,

T (v) = {w ∈ T : v � w}. A tree-indexed Markov chain (indexed by a tree T ) is a
collection {Xw: w ∈ T } of random variables taking values in a finite set S of states,
satisfying the (tree) Markovian property, i.e., for each w ∈ T , w �= 
,

P(Xw = β | X←
w
= α, XT \T (w)) = P(Xw = β | X←

w
= α), α, β ∈ S.

Here we denote XU = {Xu: u ∈ U } for a subset U of T . Let w ∈ T , w �= 
, and let
v = ←w. We call

p
(α) = P(X
 = α) and pv,w(α, β) = P(Xw = β | Xv = α), α, β ∈ S,

the initial distribution and the transition probabilities of the chain.

2.3. Tree-indexed Markov chains on quad trees

For a tree-indexed Markov chain XT , and for v ∈ T , the marginal probability
P(Xv = α) can be expressed in the initial distribution and the transition probabilities,
proceeding just as in the case of ordinary Markov chains. To be more precise, if we
denote

pv(α) = P(Xv = α), v ∈ T ,

and if U is a finite connected subset of T , then Dekking et al. obtained in [3] the follow-
ing result.

Theorem 1. Let 
(U) denote the unique vertex in U with 
(U) � v for all v ∈ U .
Then

P(XV = βV ) = p
(V )(β
(V )) ·
∏

v∈V,v �=
(V)

p←
v ,v

(β←
v
, β

v
).

For an arbitrary tree T we define its levels LM = LM(T ), by L0 = 
 and LM+1 =
{w ∈ T :

←
w ∈ LM} for M = 0, 1, 2, . . . , K. If w ∈ LM we write Lev(w) = M.

With an image consisting of 2K × 2K pixels we associate the 4-ary tree T 4
K , i.e., all

level K vertices are leaves, and for each v with Lev(v) < K one has #{w:
←
w = v} = 4

(see figure 1). To randomize the quad tree of an image consisting of 2K × 2K pixels
in a T 4

K -indexed Markov chain we already saw that we should have as state space S =
{B,W,G} representing the colors white, black and gray. Furthermore, it is required that
pv,w(W,W) = pv,w(B,B) = 1, for all v,w ∈ T 4

K , such that v = ←w. This corresponds to
the fact that the algorithm stops when the pixels in a subsquare are either all white or all
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black. With this definition the tree itself is not image dependent: the randomness resides
in the transitions from G to B, W and G.

Although the whole idea of a tree-indexed Markov chain on a quad tree is concep-
tually simple some care has to be taken. It turns out that it is only possible to define quite
restricted T 4

K-indexed Markov chains. Let w1, w2, w3 and w4 be four vertices having the

same father v, i.e.,
←
wi = v for i = 1, 2, 3 and 4. Then

P(Xw1 = W | Xv = G, Xw2 = W, Xw3 = W, Xw4 = W) = 0

but by the Markov property this probability should be equal to

P(Xw1 = W | Xv = G),

which, in general, will be positive. In other words, in this model (the so called 1–1
model) non-admissible sequences can be generated with positive probability. I.e., it is
possible that a “gray” father has four children of the same color (different from “gray”),
which is in violation with the definition of the father being in a state labeled “gray”.
The way out of this problem is to interpret quadruples of vertices having the same father
as a single vertex. This gives a T 4

K−1-indexed Markov chain with state space S4 =
{B,W,G}4 and transition probabilities

pv,w(α, β) = p(v1,v2,v3,v4),(w1,w2,w3,w4)

(
(α1, α2, α3, α4), (β1, β2, β3, β4)

)
(1)

αi, βj ∈ �, with
←
wj = vi for some i and

←
v1 = ←v2 = ←v3 = ←v4. This model is also known

as the 4–4 model. Other variations from the so-called 1–1 model will be discussed in the
next sections.

2.4. Estimation of transition probabilities from data

In this section we show how to obtain the parameters of the model from data.
Suppose there are Mtot images with corresponding trees, i.e., these trees are realizations
of a tree-indexed Markov chain XT with transition probabilities pv,w(α, β) for w ∈ T

and α, β ∈ S . Here it is always assumed that v = ←w. Let w ∈ T and 1 � m � Mtot the
color of vertex w in the mth data tree be denoted by Xm

w . One can define for α, β ∈ S ,
w ∈ T

Nw(α) = #
{
m: Xm

w = α
}
, Nv,w(α, β) = #

{
m: Xm

v = α, Xm
w = β

}
.

Furthermore, one can define the empirical transition probabilities

p̂v,w(α, β) =



Nv,w(α, β)

Nv(α)
, in case Nv(α) �= 0,

0, in case Nv(α) = 0,

and the initial empirical probabilities by

p̂
(α) = N
(α)

Mtot
.
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In [3] it was shown that these empirical transition probabilities p̂v,w(α, β) and ini-
tial probabilities p̂
(α) are in some sense the “right” estimators for the probabilities
pv,w(α, β) and p
(α), respectively.

Theorem 2. The empirical transition and initial probabilities are the maximum likeli-
hood estimators for pv,w(α, β) and p
(α), respectively.

For a proof, see [3].
Since p̂
(α) = N
(α)/Mtot, it at once follows from the fact that N
(α) is a bi-

nomial random variable with parameters Mtot and p̂
(α) that Ep̂
(α) = p
(α), i.e.,
p̂
(α) is an unbiased estimator for p
(α). Surprisingly, the empirical transition proba-
bility p̂v,w(α, β) is a biased estimator for pv,w(α, β). We have the following proposition.

Proposition 3. Setting qv = 1− pv(α), one has that

Ep̂v,w(α, β) = pv,w(α, β)
[
1− qMtot

v

]
.

Proof. Taking conditional expectation, and recalling that p̂v,w(α, β) = 0 in case
Nv(α) = 0 and p̂v,w(α, β) = Nv,w(α, β)/Nv(α) in case Nv(α) �= 0, one has

Ep̂v,w(α, β)=EE
{
p̂v,w(α, β) | Nv(α)

}

=
∞∑
n=0

E
{
p̂v,w(α, β) | Nv(α) = n

}
P

(
Nv(α) = n

)

=
∞∑
n=1

E

{
Nv,w(α, β)

Nv(α)
| Nv(α) = n

}
P

(
Nv(α) = n

)
.

Conditional on the event {Nv(α) = n}, where n � 1, Nv,w(α, β) is a binomial
random variable with parameters n and pv,w(α, β), and we find that

Ep̂v,w(α, β)=
∞∑
n=1

1

n
npv,w(α, β)P

(
Nv(α) = n

)

= pv,w(α, β)P
(
Nv(α) > 0

)
.

Since qMtot
v = P(Nv(α) = 0), the results follows. �

3. Geological applications

3.1. Synthetic data used in the simulations

To generate synthetic data for the tree-indexed Markov chain model we use the
coupled Markov chain model developed in [9]. In this model two ordinary Markov
chains are coupled. The first one is used to describe the sequence in lithology in the
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vertical direction and the second chain describes the sequence of variation in the hor-
izontal direction. The two chains are coupled in the sense that a state of a cell in the
domain is dependent on the state of two cells, the one on top and the other on the left of
the current cell. This dependence is described in terms of transition probabilities from
the two chains. The coupled Markov chain technique is efficient in terms of computer
time and storage in comparison with other techniques available in the literature such as
sequential indicator simulation [4] and truncated Gaussian methods [11]. Although it-
self a Markov random field [7], it is also efficient when compared with general Markov
random fields [2]. Some examples of input data that is generated by the coupled Markov
chain model are shown in the following sections.

Figure 2 top row shows two images that are generated by the coupled Markov
chain model. The input parameters (transition probabilities) for generating these images
are presented in table 1. The geological system consists of two different lithologies
that appear in black and white. Let (pH

ij ) be the transition probability matrix giving the
probabilities pH

ij that a lithology i is followed by lithology j . These are given in the left
side of tables 1 and 2 (e.g., the probability that B is followed by B in the horizontal
direction on the large scale is 0.98). A similar transition probability matrix (pV

ij ) is used
in the vertical direction.

(a) (b)

(c) (d)

Figure 2. Merging two different heterogeneous structures by quad, respectively dyadic trees. (a), (b): input
data; (c): simulation with the quad tree; (d): simulation with the dyadic tree (image resolution 256×256).
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Table 1
Input parameters to generate the large-scale structure in figure 2(b).

Horizontal transition matrix Vertical transition matrix

State B W State B W

B 0.98 0.02 B 0.80 0.20
W 0.02 0.98 W 0.20 0.80

Table 2
Input parameters to generate the fine-scale structure in figure 2(a).

Horizontal transition matrix Vertical transition matrix

State B W State B W

B 0.97 0.03 B 0.50 0.50
W 0.03 0.97 W 0.50 0.50

3.2. Quad tree simulation example

In this example the merging of two structures is presented. A large-scale lay-
ered system (figure 2(b)) and micro-scale laminations (figure 2(a)) are considered. The
simulations produce discontinuity at all scales (see figure 2(c)). These results are not
satisfactory from a geological point of view, since many vertical discontinuities appear
which are not present in the original image.

3.3. Dyadic trees

The example in the previous section shows that the quad tree method is not very
suitable from a geological point of view. Natural geological deposits exhibit very long
extensions comparable with their thickness. This is due to the sedimentary origin of
these deposits. With this in mind, we switch from quad trees to so called dyadic trees. In
the dyadic tree any node in the tree has two descendent nodes at the next finer scale and
one parent node at the preceding coarser scale (see figure 3(a), the 1-2V 1-2H model).

Different levels in the tree correspond to different scales of the image. In particular,
the 2M values at the Mth level of the tree are interpreted as describing certain details
about the Mth scale of the image that is not present at coarser resolution.

In 2-dimensional images dyadic trees are used in both vertical and horizontal di-
rections respectively. Firstly, the image is decomposed into its corresponding scales in
the vertical direction by a dyadic tree 2Ky until the pixel level in the vertical direction is
reached. Secondly, the features that do not appear in the vertical direction will appear
when the scaling in the horizontal direction is performed. The strips that appeared in
gray are then scaled horizontally by 2Kx into their corresponding levels in the horizontal
direction until the pixel level is reached in the horizontal direction. An image that is de-
scribed by the dyadic tree is shown in figure 3(b). To introduce more correlation into the
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(a)

(b)

Figure 3. Dyadic tree representation of an image. (a) The sketch is the tree description of an image:
right side is the image decomposition and the two left trees show two different tree representations.

(b) The sketch shows an image and the steps in its scale resolution.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Merging large-scale stratification with small-scale cross-bedding at 45 ((a)–(c)) and at 135 de-
grees ((d)–(f)). (a), (b), (d), (e) are the input synthetic data and (c), (f) are output simulation, image resolu-

tion 256×256.

simulation procedure we also consider the 2-4V 2-4H model. In this model one consid-
ers the joint distribution of the two fathers having the same father and the corresponding
four children (see figure 3(a), left).

Some numerical simulations with the dyadic tree are performed. In the first ex-
ample we merge large-scale stratification with cross-bedding at 45 and 135 degrees,
respectively. Figures 4(a), (b), (d), (e) are the synthetic data for this example. It is
assumed that both black and white layers in the large-scale structure contain the same
bedding characteristics, which is in reality not necessarily the case. The simulation re-
sult in figures 4(c), (d) shows embedding of the cross-bedding structure in the large-scale
stratification.

In the second example we merge stationary data having an identical anisotropic
spatial structure with other data having a different correlation structure. In this example,
the method shows many applications. For instance, it can be used to simulate stationary
fields. If the input data contains two realizations of stationary fields (see figures 5(a)
and (b)) the simulation result will also be a stationary field (see figure 5(c)). This exam-
ple illustrates the generality of our technique, which is capable of addressing stationary
and non-stationary data. In the bottom row of figure 5 we show how different het-
erogeneity features at very close scales can be merged together to produce compound
heterogeneity. In this example the data are two stationary random fields with differ-
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(a) (b) (c)

(d) (e) (f)

Figure 5. Merging stationary fields with identical anisotropic spatial structures to produce stationary ran-
dom fields (left two columns are the input synthetic data and right shows the output realizations, image

resolution 256×256).

ent correlation structures. The image of figure 5(d) is an anisotropic correlated field
while the image of (e) is an isotropic random field. The simulation results of merg-
ing these two different fields produce compound fields that are displayed in figure 5(f).
This example could also be used to generate complex pore structures for pore-network
models.

3.4. Polychromatic trees

All the previous simulations deal with back and white images (binary images).
However, the technique is more general. One can relax the assumption that each strati-
graphic layer has the same fine-scale structure (as in figures 2 and 4). We illustrate this
with an example.

The data for this example, presented in figure 6, would be considered as a large-
scale structure stratigraphic sequence that is known with certainty (figures 6(a), (b))
while the fine-scale structure that is embedded in that structure is uncertain. This is a re-
alistic geological assumption. The procedure can generate realizations of both structures
and preserve the deterministic information of the large-scale structure, while it produces
many possible realizations of the fine scale structure (see figures 6(c), (d)).
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(a) (b)

(c) (d)

Figure 6. A heterogeneous subsurface image of two large scale structures with different fine scale structures.
(a), (b): data; (c), (d): simulations.

4. Conclusions

A statistical framework for characterizing multi-scale heterogeneous structures has
been developed. The framework is based on hierarchical representation of images. Al-
though powerful and flexible this representation has some inherent artefacts. These are
caused by the regular subdivision into different scales, and the fact that the (tree) Markov
property still leads to too much independence in the model. As we saw these effects
may be attenuated by refining the basic model, leading to a technique which is attractive
for many applications. It has been illustrated in this study how this methodology can be
used for characterization of subsurface heterogeneity at multiple scales. Computer codes
written in FORTRAN have been developed to implement this method. The programs are
flexible and permit the user to insert his own ideas. Extensive series of numerical ex-
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periments have been carried out to investigate the applicability of this new methodology
to subsurface characterization. Synthetic data are generated using the coupled Markov
chain model, developed in [5], which are used as input for the proposed methodology.
The following conclusions can be drawn from the performed experiments:

1. The proposed methodology is capable of merging different heterogeneity patterns at
various scales. This is often encountered in geological data in a form of horizontal
laminations or cross bedding with large-scale stratigraphic layers.

2. Fractures at various angles, stationary fields, nested and compound structures can be
addressed.

3. The methodology is flexible in the sense that one can adjust input data to match well-
described field settings.

4. Conditional simulation is inherent in the technique: it does not require any special
procedures. Features provided by the data that are positioned in the same location
in the data set (i.e., well logs, large-scale seismic information) will be exactly repro-
duced in the simulations.

5. One of the advantages of the proposed methodology among many other methods is
that the uncertainty in the simulations will be bounded by the ranges provided by the
data, i.e., there are no outliers in the marginals of the generated realizations.

6. The highly detailed geological structures resulting from this methodology can be
utilized for further simulation modeling of the dynamic behavior of the reservoir.
It provides the ability to study the influence of the microscale heterogeneity on the
large-scale predictions of flow and transport in porous media. This point has been
partly investigated and some results are presented in [8].
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