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ABSTRACT

Numerical simulations of unsteady groundwater flow in homogeneous and artificially generated
heterogeneous geological formations have been presented. The heterogeneous structure of the
geological patterns has been generated using the coupled chain Markov model developed by
Elfeki and Dekking [2001]. Solution of the governing equations is achieved through the
application of a finite difference approach to the partial differential equation of unsteady
groundwater flow in horizontal plane with heterogeneous properties. It has been shown that
global gradient (regional gradient) magnitude variability coupled with aquifer heterogeneity
generates local directional and magnitude gradient variabilities. Increasing of the storage
coefficient leads to smoothing of the aquifer response in terms of hydraulic head and Darcy’s
velocity. However, the smoothing effect is more pronounced in the hydraulic heads when
compared with Darcy’s velocity. In heterogeneous aquifer presented in this study, the aquifer
response in terms of hydraulic head field and the lateral Darcy’s velocity are in phase with the
input time series, however the longitudinal Darcy’s velocity is out of phase.

1. INTRODUCTION

Transient flow conditions have strong influence on contaminant spreading in aquifers.
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This behavior has been supported by many field observations [e.g. Gelhar, 1993]. Significant
progress of steady groundwater flows in stationary Gaussian and non-Gaussian random fields
have been achieved [e.g. Smith and Freeze, 1979 and Ababou et al., 1989]. Many researchers
show still vivid interest to describe the hydrodynamics of flow in heterogeneous fields under
transient conditions. Only a limited number of studies are devoted to this area. Just recently, in
the hydrogeological community, a considerable attention is made on evaluating the effects of
transient conditions in heterogeneous media.

Two main transient conditions are causing the spreading: the gradient magnitude
variability and the gradient direction variability. In the current research, a focus is made on
the influence of gradient magnitude variability, which can be described as a multiple scale
time series, combined with aquifer heterogeneity on flow characteristics.

The goal of this research is to investigate the hydrodynamics of flow under transient
conditions in heterogeneous aquifer. Unsteady groundwater flow model in a heterogeneous
confined aquifer has been developed. The model is based on a finite difference numerical
scheme in terms of potentials. The model is used to study the influence of transient conditions
(gradient magnitude variability) on groundwater flow behavior at multiple time scales. In this
model, the influence of water level fluctuations in a river, that is feeding an aquifer (see
Figure 1), on the hydraulic head and local Darcy’s velocity fluctuations are considered.
Simulations have been performed by the developed model under two different input signals
in homogeneous and heterogeneous media with a large scale spatial variability. The first
signal is a sudden drop in the water level in the river side and the second is a time series in a
form of two components a random signal superimposed over a cosine wave.

2. GOVERNING EQUATIONS OF UNSTEADY GROUNDWATER FLOW PROBLEM

The governing equation, in the absence of source and sink terms, of unsteady two-dimensional
(in horizontal plane) saturated incompressible fluid flow in an anisotropic heterogeneous
confined aquifer is given by,
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where T (x,p) is the transmisivity in x-direction, 7}, (x,y) is transimisivity in y-direction, O(x,y,?)
is hydraulic or piezometric head, S is the storage coefficient, and Q is domain of interest.
The transmisivity is related to the hydraulic conductivity by,

T .(x,y)=K, (x,y)H(x,y)
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where H(x,y) is the aquifer thickness at location x and y.

No-flow (Neumann condition) or constant head (Dirichlet condition) are specified on the
boundaries of the flow domain, that is,
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where I is boundary of the domain, I'; + I'; +I'5 =I', n is the unit vector normal to the boundary
pointing outward, and @, is the prescribed head.
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Figure 1. Transient Groundwater Flow in Confined Aquifer.
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Figure 2. Domain Descretization (b) and The Fully Implicit Numerical Scheme (a).

DIFFERENCE FORMULATION AND SOLUTION BY CONJUGATE
METHOD

A finite difference model has been developed for discretization of Eq.(1). A numerical
scheme with a five-points operator shown in Figure 2 is used. The finite difference analog for

the derivatives are given in the following expressions,
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where T . is the interface transmisivity between node (i+1,/) and node (i,/). This transmisivity

could be estlmated by the harmonic mean of the surrounding nodes in x-direction,
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and CI)f.‘, ; 1s the hydraulic head at node (i) at time k.
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substitution of Eq.(8), Eq.(9) and Eq.(10) into Eq.(1) leads to the finite difference analog for the
partial differential equation as,
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After the solution of the flow equation, one can calculate the potential head distribution
at each time step and consequently the gradient field and the Darcy's velocity field on the grid.
This is can be done by differentiation as,
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where ¢*  and ¢* yij+1 are the inter nodal Darcy's velocity components between nodes (i,/) and

(i+1,/), and between nodes (,/) and (i,j+1) at time k.

From the Darcy's velocities the pore-velocities are calculated by dividing Eqs.(12) and
(13) by the effective porosity of the medium. This is essential to transport models that will be
considered in the future.

A large number of solvers are available for systems of linear equations and some of the
efficient solvers, in case of heterogeneous systems with large number of nodes, are the iterative
ones. All the iterative solvers start with an initial guess of the field variable and in each iteration
a new and better approximation is computed. It has been proven that the method of conjugate
gradient (CG) is powerful in addressing highly heterogeneous medium. This method is adopted
by Elfeki [1996] for steady state flow problems. The CG method is extended in the current study
to handle time dependent flow problems. The formulas and the algorithm for implementation in
case of transient conditions are presented. The algorithm used here is an extension of the one
given by Strikwerda [1989]. Some modifications are adopted to handle the heterogeneity of the
medium and transient conditions. A backward difference fully implicit scheme solved by CG is
used for the time integration. This technique is fairly simple, completely stable and is free from
oscillation problems. The equations to solve are in the form of Eq.(11) which form a linear
system ax = b where, a is positive definite matrix and the vector b contains both zeros and the
values of the solution on the boundary. The procedure involves the following steps between two
successive time steps k and k+1.

First step: an initial iterate ®*© 1 given and then the residual P O, j1s computed as,
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A matrix P*%;; is introduced as
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with |#@|? also being computed by accumulating the products (7; f(o)

form is given by,
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7). In a mathematical

Another matrix Qk(o) i; 1s introduced and computed as
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and the inner product (P®,0"?), is computed by accumulating the product P,'f(O) O Jk(O) to
evaluate the parameter o/” as,
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Note that for Dirichlet boundary condition (prescribed head boundary) #™, P, and Q"™
where m denotes the iteration number, should be zero on the boundary.

Second step: begin the main computation loop. (D,-J-k(m) and r;; Km) are updated by
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with | A |2 also computed. Another parameter f is computed by the formula,
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Third step: & is computed as the ratio,
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and m is incremented.

The conjugate gradient method is terminated when | /£ s sufficiently small. As with
the general iterative methods, the method should be continued until the error in the iteration is
comparable to the truncation error in the numerical scheme. Table 1 displays the numerical
values used to perform the simulations in homogeneous and heterogeneous cases under sudden
drop in water level and time series boundary conditions.

Table 1. Simulation Parameters used in Computation

Parameter Numerical Value
Domain dimensions 200m x 50m

Domain discretization 1.0m x 1.0m

Time step 0.5 day

Upstream Fixed Head Boundary 20 m

Downstream Sudden drop Head Boundary 10 m

Constant Aquifer Thickness 10 m

Homogeneous Hydraulic Conductivity 10 m/day
Heterogeneous Hydraulic Conductivity 1.0, 10., 50., 100. m/day
Accuracy in Computation 0.001

No. of Time Steps 50 Steps (25 days)
Storage Coefficient 0.00001, 0.0001, 0.001, 0.01, 0.1

4. ANALYSIS OF MODEL RESULTS

In the homogeneous aquifer presented in this simulation (Figure 3), it is found that increasing
the storage coefficient leads to smoothing and delaying in the aquifer response in terms of
hydraulic head and Darcy’s velocity. The aquifer response in terms of hydraulic head is in
phase with the input time series however, the longitudinal Darcy’s velocity is out of phase.

In a heterogeneous aquifer, a geological structure with realistic characteristics is
generated and displayed in Figure 4. Figure 5 shows the simulation under sudden drop in
water level at the right boundary (S = 0.01). The Figure shows the propagation of the
groundwater head over a record of 9 days when steady state condition is almost achieved.
The result in case of time series boundary is displayed in Figure 6. The simulations show
different responses according to the value of the storage coefficient. Similar to the
homogeneous case, increasing of the storage coefficient leads to smoothing and delaying in
the aquifer response in terms of hydraulic head and Darcy’s velocity. However, the
smoothing effect is more pronounced in the hydraulic head when compared with Darcy’s
velocity. The aquifer response in terms of hydraulic head field and the lateral Darcy’s
velocity are in phase with the input time series, however the longitudinal Darcy’s velocity is
out of phase. Global gradient (regional gradient) magnitude variability coupled with aquifer
heterogeneity generates local directional and magnitude gradient variabilities.
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Figure 3. Numerical Simulation in Case of Homogenous Medium under Time Series Boundary at the Water Level
(Top left most graph is the input signal, bottom left graph is the aquifer response in terms of hydraulic head at the
middle of the aquifer and the bottom right graph is the aquifer response in terms of Darcy’s velocity at the same
location.
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Figure 4. Transient Groundwater Flow in Heterogeneous Confined Aquifer.
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Figure 5. Snapshots of The Hydraulic Head Distribution under Sudden Drop in Water Level in Heterogeneous
Confined Aquifer (Steady state condition is almost reached after 9 days).
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Figure 6. Numerical Simulation Results in Case of Heterogeneous Medium under Time Series Boundary at the
Water Level. Top left most graph is the input signal, right most graph is the aquifer response in terms of hydraulic
head at the middle of the aquifer, the bottom left graph is the aquifer response in terms of longitudinal Darcy’s
velocity at the same location and the bottom right graph is the aquifer response in terms of lateral Darcy’s velocity at




the same location.

5. CONCLUSIONS

Numerical simulations of groundwater flow in homogeneous and artificially generated
heterogeneous geological formations have been presented. The heterogeneous structure of the
geological patterns has been generated using the coupled chain Markov model developed by
Elfeki and Dekking [2001]. Solution of the governing equations is achieved through the
application of a finite difference approach to the partial differential equation of unsteady
groundwater flow in horizontal plane with heterogeneous properties. The solution algorithm is an
extension of the CG method used by Elfeki [1996] to handle time dependent problems. The
following conclusions can be drawn from this research:

L.

Global gradient (regional gradient) magnitude variability coupled with aquifer
heterogeneity generates local directional and magnitude gradient variabilities.

Increasing the storage coefficient leads to smoothing and delaying in the aquifer response
in terms of hydraulic head and Darcy’s velocity. The smoothing effect is more
pronounced in the hydraulic heads when compared with Darcy’s velocity.

In the homogeneous aquifer presented in this simulation, the aquifer response in terms of
hydraulic head field is in phase with the input time series however, the longitudinal
Darcy’s velocity is out of phase.

In the heterogeneous aquifer presented in this study, the aquifer response in terms of
hydraulic head field and the lateral Darcy’s velocity are in phase with the input time
series, however the longitudinal Darcy’s velocity is out of phase.
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