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Abstract. This paper is an extension of the two-dimensional coupled Markov chain model
developed by Elfeki and Dekking (2001) supplemented with extensive simulations. We focus
on the development of various coupled Markov chains models: the so-called fully forward
Markov chain, fully backward Markov chain and forward–backward Markov chain models.

We addressed many issues such as: sensitivity analysis of optimal sampling intervals in hor-
izontal and lateral directions, directional dependency, use of Walther’s law to describe lateral
variability, effect of conditioning on number of boreholes on the model performance, stability

of the Monte Carlo realizations, various implementation strategies, use of cross validation
techniques to evaluate model performance and image division for statistically non-homoge-
neous deposits are addressed. The applications are made on three sites; two sites are located in

the Netherlands, and the third is in the USA. The purpose of these applications is to show
under which conditions the Markov models can be used, and to provide some guidelines for
the practice. Entropy maps are good tools to indicate places where high uncertainty is present,
so can be used for designing sampling networks to reduce uncertainty at these locations.

Symmetric and diagonally dominant horizontal transition probabilities with proper sampling
interval show plausible results (fits with geologists prediction) in terms of delineation of
subsurface heterogeneous structures. Walther’s law can be utilised with a proper sampling

interval to account for the lateral variability.

Key words. Markov chains, Walthers’ law, conditional simulations, entropy, stochastic
modelling, subsurface heterogeneity.

1. Introduction

The impact of heterogeneities in the subsurface is critical to understand the move-

ment of contaminants and the possibility for their removal by various remediation

technologies. Therefore, characterization of subsurface heterogeneity that incorpo-

rates the dominant features of the geological heterogeneity at the significant scales of
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variability is essential for reliable predictions of the contaminant fate. Several geo-

statistical methods are available such as stochastic Gaussian fields based on auto-

correlations or variograms (e.g., Deutsh and Journel, 1992), object based models

(e.g., Haldorsen and Damsleth, 1990; Chessa, 1995), fractal models (e.g., Haldorsen

and Damsleth, 1990; Wheatcraft and Cushman, 1990) and transition probability

based geo-statistical models (e.g., Markov chains). The early work on Markov

chains was performed by Krumbein (1967) to simulate stratigraphic sequences in

one-dimension. For recent work on extensions of Markov chains to multi-dimen-

sions see Carle and Fogg, 1996; Carle, et al., 1998; Parks, et al., 2000; Elfeki and

Dekking, 2001.

The coupled Markov chain model (CMC) developed by Elfeki and Dekking (2001)

has some advantages over conventional semivariogram-based methods. These

advantages include: (1) Conventional geostatistical methods (Deutsch and Journel

1992) have difficulty incorporating geologic interpretations. This is possible with the

CMC method. (2) The CMC method does not need parametric fitting of variograms,

auto-covariance or transition probabilities like conventional geostatistical methods

(Deutsch and Journel, 1992). It works directly, with transition probability data

estimated from boreholes. (3) The CMC method can straightforwardly deal with

statistical non-homogeneities. Variability—either statistically homogeneous or het-

erogeneous—can be implemented in a single transition probability matrix, and the

algorithm will cope with this variability in the data. However, in other methods,

some preprocessing such as zonation and parameter estimation of each zone is

needed (see e.g., the sequential indicator simulation applied by Bierkens, 1994 to the

central Rhine-Meuse delta in The Netherlands). (4) Asymmetric heterogeneity

structures can be modeled by CMC because there is no intrinsic symmetry

assumption in the coupled Markov chain model. In contrast, variogram or au-

tocovariance based geostatistics handle only symmetric heterogeneity. (5) Geological

observations and principles (e.g., fining up/down sequences and juxtapositional

tendencies) can be directly implemented in the transition probability matrix. (6)

CMC methodology needs only the single step transition probability matrix in both

horizontal and vertical directions, which can be obtained from the field with high

degree of reliability, and the algorithm takes care of the N-step transition proba-

bilities (larger lags). However, in variogram or autocovariance based geostatistics

estimation of variogram or auto-covariance at all possible lags is needed, and the

reliability deteriorates at larger lags.

The coupled Markov chain model developed seems promising when applied to

outcrop data (Elfeki and Dekking, 2001). However, some issues need to be resolved.

For instance, transition probabilities of the chains are directionally dependent, i.e.,

the transition probability from one state to another in a specific direction, e.g., from

left to right, is not necessarily the same as going from right to left. So the model

needs further investigation when applied to field data. The issue of directionality, the

estimation of the horizontal transition probabilities, sampling intervals in the hori-

zontal direction, and evaluation of the model performance are crucial aspects for
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simulation of realistic field situations. Some of these aspects can be obtained from

geological principles (e.g., geological history, sedimentation directions, aggression

transgression periods, Walther’s law, etc.). This prior knowledge leads to a sto-

chastic-geologic type of approach to subsurface characterization that produces more

realistic simulations.

In this paper we present three different types of Markov chain models that can be

applied in field situations. These models are based on previous work by Elfeki and

Dekking (2001). We also show how one could choose between these models to match

specific geological settings. The first model is called the fully forward model, where

the name refers to the fact that the transitions are directed from left to right during the

estimation phase from field data, and also during the simulation phase. This forward

model starts from the most left side well and conditions on right hand side wells. The

second model is the fully backwardMarkov chain model, where the model starts from

the right hand side well and goes backward (i.e., to the left) in the direction opposite

to the former model. The conditioning is performed on the left side wells. The third

model is the forward–backward model, which combines the two approaches. We fill

the domain between two wells from both sides in two steps: a forward step which goes

from left to right using a forward Markov chain and a second step which goes from

right to left using the backward chain. The switching between the two models con-

tinues until the domain between the two wells is filled with the geological states.

The layout of the paper is as follows: A brief review of the one-dimensional

Markov chain is given followed by the backward Markov chain theory, and an

introduction to the coupled Markov chain in two-dimensions. The implementation

algorithm of the various Markov chain strategies is presented. The largest part of the

paper is devoted to four case studies with two data sets from The Netherlands and

one data set from the USA.

2. Theory of One-dimensional Markov Chain

For the sake of completeness a short description of the one-dimensional Markov

chain (Doveton, 1994) is given. A Markov chain is a probabilistic model that exhibits

a special type of dependence (Billingsley, 1995): given the present the future does not

dependent on the past. In formulas, let Z0;Z1;Z2; . . . ;ZN be a sequence of random

variables taking values in the state space fS1;S2; . . . ;Sng. The sequence is a Markov

chain or Markov process, if

PrðZi ¼ SkjZi�1 ¼ Sl;Zi�2 ¼ Sn;Zi�3 ¼ Sr; . . . ;Z0 ¼ SaÞ
¼ PrðZi ¼ SkjZi�1 ¼ SlÞ ¼: Plk; ð1Þ

where the symbol ‘|’ is the symbol for conditional probability and pek is the prob-

ability to make a transition from state Sl to Sk.

In one-dimensional problems a Markov chain is described by a transition prob-

ability matrix. Transition probabilities correspond to relative frequencies of transi-

tions from states to states. The transition probabilities are all non-negative, and for
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fixed l adding the probabilities plk over all possible states k gives 1. Apart from these

single step transitions (i.e., going from one state in a cell to another state in the

immediate next cell), one also considers N-step transitions, which stand for transi-

tions from a state to another taking place in N steps. The N-step transition proba-

bilities can be obtained by multiplying the single-step transition probability matrix

by itself N times. Krumbein (1967) was the first to simulate stratigraphic sequences in

one-dimension using this theory.

The backward (reverse) chain is obtained by reversing the direction in which we go

through the cells. Hence its transition probabilities are given by

p
 
kl ¼ PrðZi�1 ¼ SljZi ¼ SkÞ: ð2Þ

Actually we do not need an expression for these transition probabilities since we

are always interested in conditioning. It will appear in Section 3 that we can express

the necessary probabilities in those of the forward chain (see also the appendix).

It is important to notice that the distinction between forward and backward

transition probabilities is not trivial (i.e., plk 6¼ p
 
kl ). This property is appealing form

geological point of view since sometimes some transitions do exit in certain direction

while do not appear in other directions (juxtapositional tendencies). This phenom-

enon will be illustrated in the application section.

3. One-dimensional Markov Chain Conditioned on Future States

Consider a one-dimensional series of events that is Markovian (Figure 1). Fixing a

cell i with its state Zi, we will refer to a state Zj for any j > i as future state. The

probability of cell 1 to be in state Sb, given that the previous cell 0 is in state Sa and

cell N is in state Sq can be expressed mathematically as (Elfeki and Dekking, 2001)

pabjq :¼ PrðZ1 ¼ SbjZ0 ¼ Sa; ZN ¼ SqÞ ¼
pabp

ðN�1Þ
bq

p
ðNÞ
aq

; ð3Þ

where p
ðNÞ
aq is the N-step transition probability.

We will now compute the corresponding conditional probability for the backward

chain:

p
 
qrja ¼ PrðZN�1 ¼ SrjZN ¼ Sq; Z0 ¼ SaÞ:

This probability can be written in terms of joint probabilities as

p
 
qrja¼PrðZN�1¼SrjZN¼Sq; Z0¼SaÞ¼

PrðZN�1¼Sr;ZN¼Sq; Z0¼SaÞ
PrðZN¼Sq; Z0¼SaÞ

: ð4Þ

Switching to conditional probabilities leads to

SS S

i0 1 i+1i-1 N2

l k qdSSa
N-1

SrSb

Figure 1. Numbering series of events for a one-dimensional Markov chain, row 1 shows the states, and

row 2 shows the spatial locations.
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p
 
qrja ¼ PrðZN�1 ¼ SrjZN ¼ Sq; Z0 ¼ SaÞ

¼ PrðZN ¼ SqjZN�1 ¼ Sr;Z0 ¼ SaÞ:PrðZN�1 ¼ SrjZ0 ¼ SaÞ:PrðZ0 ¼ SaÞ
PrðZN ¼ SqjZ0 ¼ SaÞ:PrðZ0 ¼ SaÞ

: ð5Þ

By applying the Markovian property on the conditional probability in the

numerator of Equation (5), one obtains

p
 
qrja ¼ PrðZN�1 ¼ SrjZN ¼ Sq;Z0 ¼ SaÞ

¼ PrðZN ¼ SqjZN�1 ¼ SrÞ:PrðZN�1 ¼ SrjZ0 ¼ SaÞ
PrðZN ¼ SqjZ0 ¼ SaÞ

¼ PrqP
ðN�1Þ
ar

P
ðNÞ
aq

; ð6Þ

and we have expressed p
 
qrja in the forward transition probabilities.

4. Coupling and Conditioning Two One-dimensional Markov Chains on a

Lattice System (CMC Method)

The CMC is based on two independent Markov chains. One describes the variations

in the lithologies in the horizontal direction, and the other describes the variation in

the vertical direction (from top to bottom). Although the method is general, it can

handle any direction. The reason for choosing the top to bottom transitions is that it

is easy to find information on the top surface layers where this information can be

propagated down via the CMC model. The two chains are coupled in the sense that a

state Zij of a cell (i, j) in the domain depends on states Zi; j�1 and Zi�1; j of the cells on

top (i, j)1) and on the left (i)1, j) of the current cell. We follow the same procedure

as in our previous work for coupling the vertical and the horizontal chains. This

means that when we use the forward model, the forward horizontal chain is coupled

with the vertical chain using the formula, Elfeki and Dekking (2001)

Plm; kjq :¼ PrðZi; j ¼ SkjZi�1; j ¼ Sl;Zi; j�1 ¼ Sm;ZNx; j ¼ SqÞ

¼
phlk:p

hðNx�iÞ
kq :pm

mk
P

f

phlf:p
hðNx�iÞ
fq :pm

mf

; k ¼ 1; . . . ; n; ð7Þ

where phlk is the one-step forward horizontal transition probability from Sl to Sk (the

superscript h refers to the horizontal direction), p
hðNx�iÞ
kq is the (Nx � i)-step forward

horizontal transition probability from Sk to Sq, and pvmk is the one-step vertical

transition probability from Sm to Sk (the superscript v refers to the vertical direction).

However, when we apply the backward chain in the horizontal direction, the

backward transition probability matrix is used to replace the forward one. There-

fore, the formula becomes

p
 
dm; kja :¼ PrðZi; j ¼ SkjZi�1; j ¼ Sd;Zi; j�1 ¼ Sm;Z0; j ¼ SaÞ

¼ phkd:p
hðiÞ
ak :p

m
mk

P

f

phfd:p
hðiÞ
af :p

m
mf

; k ¼ 1; . . . ; n: ð8Þ
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Finally, in case of the forward-backward Markov chain model the above formulas

are used in an alternating manner. In the forward steps Equation (7) is used, while in

the backward steps Equation (8) is used (Figure 2).

5. Extracting a Single Final Geological Image from a Collection of Generated

Realizations

An ‘‘engineering approach’’ is adopted to extract an image of the final lithology from

a collection of realizations generated by the CMC model in a Monte Carlo frame-

work. This final image is obtained by choosing the lithology that occurs most fre-

quently in the set of realizations. The background that motivated this approach is

two fold: the first is that the subsurface structure is a single realization, therefore we

tried to extract the most probable image of the subsurface from a collection of

realizations. The second is that engineers prefer cost effective techniques, So, instead

of generating many realizations of subsurface structures and perform flow and

transport simulations in each realization, we propose an alternative approach: one

summarizes all generated realizations, and obtains a single most probable image that

can be used later as a deterministic image for flow and transport predictions saving a

lot of computational costs. This approach has been used by Elfeki and Rajabiani

(2002) and shows promising results.

This approach is as follows. The indicator function of lithology Sk at cell (i, j) is

given by

Ikði; jÞ ¼ 1 if Zij ¼ Sk,
0 otherwise.

n
ð9Þ

Let the realizations be numbered 1, . . . ,MC, and let Z
ðRÞ
i; j be the lithology of cell (i, j)

in the Rth realization. The empirical relative frequency of lithology Sk at cell (i,j) is:

Coupled Markov Chain for Backward Conditioning on the Left Boundary.

i+1,ji,j
i,j-1

1,1

Nx,Ny

Nx,1

1,Ny

Nx,j

Coupled Markov Chain for Forward Conditioning on the Right Boundary.

i-1,j i,j

i,j-1

1,1

Nx,Ny

Nx,1

1,Ny

Nx,j1,j

1,j

------------------>

------------------<

Figure 2. Numbering system in a two-dimensional domain with forward and backward conditioning:

dark grey cells are known cells, light grey cells are previously generated cells, and white cells are cells that

are going to be generated.
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pk
ij ¼

1

MC

XMC

R¼ 1

I
ðRÞ
k ði; jÞ: ð10Þ

In the final image Z* the lithology at cell (i, j) will be the lithology which occurs

most frequently in the MC realizations. So, if Sl is such that

pl
ij ¼ max p1

ij; p
2
ij; . . . ;pn

ij

n o
ð11Þ

then Z�i; j ¼ Sl. In Equation (11) it may happen that l is not unique; in that case the

computer code chooses the first lithology Sl with maximal occurrence. This phe-

nomenon—if it happens at all—will only take place at the boundaries between

lithologies and will have negligible influence on the results.

An application of the aforementioned method is presented in the following

example, which is one of the case studies (Afsluitdijk-Lemmer) given later. Figure 4

presents three generated realizations conditioned on eight boreholes. Figure 5 shows

the relative frequency plots of each lithology.

6. Empirical Entropy

Adopting the approach mentioned in Section 5 to decide for a final image that

describes the most probable subsurface structure, we found it is necessary to provide

some measure of the uncertainty in the final image. We have chosen for empirical

entropy to convey this issue. The empirical entropy (see e.g., Arndt, 2001, p. 54) at

location (i, j) is given by

Figure 3. Various ways of implementing Markov chain models: top is the fully forward model, middle

the fully backward model and down the forward-backward model.
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Hij ¼ �
Xn

k¼1
pk
ij lnðpk

ijÞ; i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny: ð12Þ

This formula is implemented in the computer code to calculate the empirical entropy

at each grid cell. Therefore a complete map of the entropy distribution can be

constructed.

7. Estimation of the Vertical Transition Probability Matrix from Boreholes

The vertical transition probability matrix can be estimated from boreholes data.

The tally matrix of vertical transitions is obtained by superimposing a vertical line

with equidistant points along the boreholes with a chosen sampling interval. The

empirical transition frequencies between the states are calculated by counting how

many times a given state say Sl is followed a state Sk, and then divided by the total

number of transitions form state Sl to any of the possible states (Davis, 1986)

pm
lk ¼ T m

lk

Xn

q¼1
T m
lq

 !�1

; ð13Þ

where Tv
lk is the number of observed transitions from Sl to Sk in the vertical direc-

tion.

A computer code developed in the present study is utilized to calculate the vertical

transition probabilities from boreholes. All boreholes are combined under the

assumption that the formation is statistically homogeneous. However, in the

applications, we show cases where the method can handle straightforwardly geo-

logical features that are statistically non-homogeneous, without using zone subdi-

visions as other methods (see the sequential indicator simulation method (SIS),

applied by Bierkens (1994) on river deposits in the Netherlands).

8. Horizontal Transition Probability Matrix (Walther’s Law in a Markovian

Context)

One of the important issues in geology and geostatistics is the inference of lateral

(horizontal plan) variability. This is made possible by the application of Walther’s

Figure 4. Three realizations generated by the Forward Markov chain model and conditioned on eight

boreholes.
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law, which states that lithologies that are observed in the vertical depositional se-

quences must also be deposited in adjacent transects at another scale (Middleton,

1973 referenced by Parks et al. (2000)). This law can be interpreted as: the observed

variability in the boreholes at a certain scale (e.g., in the order of cm–m) in the

boreholes must be present in the horizontal direction at a larger scale (e.g., in the

order of 10 m to km). The scale ratio, which we call Walther’s constant, is a key issue

in subsurface characterization. In the case studies given in this paper we investigated

this issue at three different sites.

9. The Algorithm

A procedure for Monte–Carlo sampling to implement the three Markov chain

models is presented. Refer to Figure 3 during the description of the algorithm. The

procedure for conditional simulation on two neighbouring wells is as follows. Let the

number of simulations MC be given, as well as the horizontal and transition

probability matrices (see Sections 7 and 8) and borehole data.

–Fully forward coupled Markov chain model

Step 1: The two-dimensional domain is discretized using proper sampling intervals.

The proper sampling interval should be the one that reproduces the

important geological features observed in the boreholes with reasonable

computer cost (i.e., not very fine that needs high computer cost and not too

coarse that smears out important geological features).

Step 2: If there are m boreholes, borehole data is inserted in their locations at (ik; j),

for k ¼ 1; . . . ;m and j ¼ 1; . . . ;Ny.

Step 3: The top row is generated using the one-dimensional conditioned horizontal

Markov chain at location (i,1), i ¼ 1; . . . ;Nx using Equation (3), i.e., from

Figure 5. Relative frequency plot of each geological state (three rows) and the final geological image

(bottom left corner) based on 30 realizations. The vertical scale bars code the magnitude of the probability

of the presence of each of the six geological states.
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the conditional distribution Pr ðZi;1 ¼ SkjZi�1;1 ¼ Sl;ZNx;1 ¼ SqÞ given state

Sl at (i)1, 1) is known and state Sq at cell (Nx; 1). A state is simulated for Sk

at cell (i, 1) according to the distribution given by (pl; rjq : r ¼ S1; . . . ;Sn).

Step 4: The rest of the cells (numbered (i, j), i ¼ 2; . . . ; i1 � 1; i1 þ 1; . . . ; i2 � 1;

i2 þ 1; . . . ;Nx � 1 and j ¼ 2; . . . ;Ny) is generated inside the domain row-

wise, using the conditional distribution Pr (Zi; j ¼ SkjZi�1; j ¼ Sl;Zi; j�1 ¼
Sm;ZNx; j ¼ Sq), given that the states at (i)1, j), (i, j)1) and (Nx, j) are

known. The four-index conditional probability plm; kjq is calculated with

Equation (7). From state Sl at the horizontal neighbouring cell (i)1, j), Sm at

the vertical neighbouring cell (i, j)1) and the state Sq at the cell on the right

hand side boundary (Nx; j) one can determine the succeeding state Sk at cell

(i, j). A state Sk is simulated according to the distribution given by

(plm; rjq : r ¼ S1; . . . ;Sn).

Step 5: The procedure stops after having visited all the cells in the domain between

the two boreholes at i=1 and i ¼ Nx.

Step 6: The same procedure is followed for the next two boreholes and so on, until

the domain is filled with the states.

Step 7: After the first realization is generated, the procedure is repeated MC times,

starting with different seeds for the random number generator.

Step 8: During the Monte–Carlo runs, the program calculates the empirical prob-

ability of presence of a certain lithology at each cell using Equation (11), and

the empirical entropy using Equation (12).

–Fully backward coupled Markov chain model

The procedure is similar to the one described above. However, the algorithm

starts from right to left, and Equation (8) is used.

–Forward–Backward coupled Markov chain model

The procedure is similar to the one described above. However, the algorithm

starts from left to right with one step (the forward-step) using Equation (7). Then,

the algorithm starts from right to left in the second step (the backward step) using

Equation (8). In this way, the algorithm continuous, switching between forward

and backward steps.

10. Sensitivity Analysis, Implementation Issues and Applications

The main reasons to perform research in the application of the coupled Markov

chains are: (1) to show the performance of the model in various geological

environments; (2) to study the influence of changing model parameters on sim-

ulation results to find the best choice of these parameters; (3) to explore the

impact of directionality of the CMC (i.e., fully forward, fully backward and

forward–backward) on model results. Therefore, the following issues will be

considered:
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–various sampling intervals,

–various horizontal transition probability matrices,

–various degrees of diagonal dominancy of the horizontal transition matrix,

–use of Walther’s law to account for horizontal variability,

–effect of conditioning on the model performance,

–sensitivity of the Monte–Carlo realizations,

–various implementation strategies: forward, backward and forward–backward

methods,

–use of cross validation to evaluate the model performance.

In this section, the various coupled Markov chain models described in the previous

sections are applied on field data to show under which conditions these models can

be used, and to provide some guidelines for the practice. Data from the Netherlands

and USA are used. Data from The Netherlands are obtained from CPT (cone

penetration tests) profiles from geo-technical projects (Afsluitdijk-Lemmer and

Afsluitdiujk Caspar de Roblesdijk). The data from the USA are boreholes at

Delaware’s river and its underlying aquifer system in the vicinity of the Camden

metropolitan area, New Jersey. The data are used for hydro-geological applications

and obtained from the literature (Navoy, 1991). The applications show a wide

range of variability, starting from simple layering to more complex geological

configurations.

10.1. SITE DESCRIPTION AND PARAMETER ESTIMATION

The first application is made at Afsluitdijk-Lemmer which is a part of the

IJsselmeerdijken at the province of Friesland, in the north of The Netherlands. A

longitudinal section of the dyke from 34 to 38 km is given in Figure 6 (top left most

image). The figure shows CPT profiles and the expected geological configuration

drawn by geologists. Six different geological lithologies are distinguished. The

description of these lithologies and their coding are given in Table 1.

A two-dimensional model for the longitudinal section, shown in Figure 6 (top left

most image), is made. The model covers an area of 1680 m · 20 m and the size of the

regular grid used is 168 · 40 (total of 6720 cells ) with cell dimensions of

10 m · 0.5 m. The vertical transition probability matrix calculated from eight

boreholes from top to bottom is given in Table 2. It is important to mention that the

white space above the geological cross section of Figure 5 (top) is considered as an

artificial lithology coded as state number 7 and the white space under the section is

coded as state number 8. So, in total we deal with eight states, two of which are

artificial. This is necessary to simulate the top and bottom boundary profile of the

geological section.
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10.2. STABILITY OF MONTE–CARLO REALIZATIONS

A sensitivity analysis was performed to study the effect of number of realizations on

the convergence of the final image. To this end, Monte–Carlo simulations with 5, 10,

30, 100 and 1000 realizations were carried out. The results are displayed in Figure 6.

It is obvious that the results stabilize at 30 realizations. So, it is decided to choose 30

realizations for the rest of the applications.

10.3. DEGREE OF DIAGONAL DOMINANCY OF THE HORIZONTAL TRANSITION PROB-

ABILITY MATRIX

Several horizontal transition probability matrices are used to find out the best among

five matrices in representing the geological structure at the site. Horizontal transition

probability matrices are assumed diagonally dominant (i.e., the diagonal elements

are larger than the sum of the elements in the row). Diagonal elements of the

horizontal transition probability matrix phii¼0.60, 0.70, 0.80, 0.90 and 0.993 are
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-20

-10
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0

1 2 3 4 5 6

Results of 30 Realizations

Results of 100 RealizationsResults of 5 Realizations

Results of 10 Realizations Results of 1000 Realizations

Figure 6. Effect of number of Monte Carlo realizations on the stability of the final image. Geological

interpretation (left most top image), second row left most image: borehole data. The rest of the images are

generated by the model and conditioned on eight boreholes using 5, 10, 30 100 and 1000 realizations,

respectively.

Table 1. Coding of lithologies

Lithology Code

Clay, sandy to sand, clayey (deposition of Duinkerke,Westland – formation) 1

Peat (Hollandpeat, Westland – formation) 2

Sand, locally humous and / with loam layers (formation of Twente) 3

Sand , locally loamy (formation of Drente) 4

Mainly clay (artificial ground) 5

Loam, frequently with sand and stones (formation of Drente) 6
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investigated. The off-diagonal elements in each case are calculated based on

phij ¼ ð1� phiiÞ=ðn� 1Þ where n is the number of states (n ¼ 7). This assumption

means that the transition from a lithology to itself is dominant, and if there is a

change, then there is no information on which change (all equiprobable). This is the

worst case scenario when information is lacking about the site in terms of transition

probabilities. This approach is similar to the common application of geo-statistics

where a single indicator variogram model is used for all components. The horizontal

sampling interval is kept constant at 10 m. Figure 7 shows the results of this study.

Choosing phii ¼ 0.993 on the diagonal elements of the horizontal transition proba-

bility matrix, leads to results very close to what has been predicted by the geologists

(Figure 6 top left most image), except maybe for the hill in the middle of the image.

The problem of the heap is solved by reducing the white space above the profile. This

is done by omitting the white space up to the highest borehole. The corresponding

vertical transition probabilities are estimated. The only change in the matrix is in the

seventh row (see Table 3). Figure 7 bottom row shows the simulation results that

correspond to the change made in row number seven. It is obvious that the heap is

better reproduced in the simulation.

10.4. SAMPLING INTERVALS (CELL SIZES)

A sensitivity analysis has been performed to look at the horizontal sampling inter-

vals. We want to test a highly diagonal dominancy horizontal matrix with different

sampling intervals. The question is which horizontal sampling interval would

reproduce the geological features? The vertical sampling interval is kept constant.

The vertical and horizontal transition probability matrices are also kept constant

(Table 2 for the vertical and table 3 for the horizontal after changing row 7 as in

Table 4). Table 3 shows that a lithology followed by itself are dominating, and if

there is a change then all the states are equiprobable. Five horizontal sampling

intervals are considered. Figure 8 shows the simulations with sampling intervals

Table 2. Vertical transition probability matrix estimated from eight boreholes sampled over 0.5 m (all

boreholes depths are 20 m)

State

State 1 2 3 4 5 6 7 8

1 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.844 0.156 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.830 0.000 0.034 0.000 0.136

5 0.000 0.308 0.000 0.077 0.615 0.000 0.000 0.000

6 0.000 0.000 0.000 0.333 0.000 0.667 0.000 0.000

7 0.045 0.000 0.000 0.000 0.076 0.000 0.879 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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equal to 2.5, 5, 10, 20 and 40 m, respectively, in the right column and the corre-

sponding entropy maps in the left column. The results lead to more or less the same

configuration. However, at small sampling intervals dx ¼ 2.5 and 5 m some white

spots appear in the middle of the image (that correspond to state 7) which is an

artefact. The reason that this occurs is that in the horizontal transition probability

matrix (Table 3) there is a possibility to go from states 6 to 7 with the very low

probability 0.001. Therefore there will be a non-negligible chance that 6 might be

followed by 7 in a long row of transitions (which do occur in the small sampling

interval case). To get rid of this phenomenon, we must put ph67 ¼ 0. The entropy

maps (Figure 8 left column top two images and bottom two images) show reduction

in the uncertainty after this correction. This means that incorporating deterministic

knowledge (ph67 ¼ 0) leads to reduction of uncertainty, which is to be expected.

Figure 7. Sensitivity analysis on the degree of diagonal dominancy of the horizontal transition proba-

bility matrix. Top left most image is eight boreholes with 20 m depth. The images with phii¼0.6, 0.7, 0.8,
0.9, 0.993, respectively, are the images generated by the model based on 30 realizations and conditioned on

8 boreholes using horizontal symmetric and diagonally dominant transition probability matrices. Last row

left image is eight boreholes with 5 m sky deleted. The right image is the corresponding simulation with

0.993 as diagonal elements.

Table 3. Assumed forward horizontal transition probability matrix over a sampling interval of 10 m

State

State 1 2 3 4 5 6 7 8

1 0.993 0.001 0.001 0.001 0.001 0.001 0.001 0.001

2 0.001 0.993 0.001 0.001 0.001 0.001 0.001 0.001

3 0.001 0.001 0.993 0.001 0.001 0.001 0.001 0.001

4 0.001 0.001 0.001 0.993 0.001 0.001 0.001 0.001

5 0.001 0.001 0.001 0.001 0.993 0.001 0.001 0.001

6 0.001 0.001 0.001 0.001 0.001 0.993 0.001 0.001

7 0.001 0.001 0.001 0.001 0.001 0.001 0.993 0.001

8 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.993
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10.5. WALTHER’S LAW

We tried to incorporate knowledge from Walther’s law in our model. We used the

estimated vertical transition probability matrix to describe the horizontal variation

between the states. Figure 9 (second row image) is the generated final image based

on this matrix. One observes some abrupt changes in the image, caused by the

Figure 8. Sensitivity analysis on horizontal sampling intervals using a fixed symmetric horizontal tran-

sition probability matrix with diagonal elements phii¼0.993. Top right most image shows the eight bore-

holes, and the rest of the images are the images generated by the model based on 30 realizations, and

conditioned on eight boreholes with different horizontal sampling intervals (right column), and empirical

entropy estimation (left column). Last two rows are simulations with ph67¼0.

Table 4. Estimation of vertical transition probability of state 7 from eight boreholes sampled over 0.5 m

for boreholes depth 20 m and 15 m respectively

State

State 1 2 3 4 5 6 7 8

7 (20 m depth) 0.045 0.000 0.000 0.000 0.076 0.000 0.879 0.000

7 (15 m depth) 0.012 0.000 0.000 0.000 0.160 0.000 0.720 0.000
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conditioning. However, when a subtle modification is made in the horizontal tran-

sition matrix displayed in Table 5 by changing some zeros to very small probabili-

ties, equal to 0.001, the abrupt changes disappear. The simulations show that with

dx ¼ 40 m one gets the best results by use of Walther’s law.

10.6. SITE DESCRIPTION AND PARAMETER ESTIMATION

The second application is made at Afsluitdijk Caspar de Roblesdijk, which is a

part of Waddenzeedijken in the province of Friesland, in the north of the Neth-

erlands. A longitudinal section of the dyke of about 2500 m length is given in

Figure 10 (top). Figure 10 shows CPT profiles and the expected geological con-

figuration drawn by geologists. Eleven different geological lithologies are observed

in the boreholes. There are also two artificial lithologies added to represent the

upper and lower regions of the section. These artificial lithologies are coded with

12 and 13. CPT data as shown in the profiles (Figure 10) are made at different

Figure 9. Sensitivity analysis on the application of Walther’s Law. The second row shows the generated

image using identical horizontal, and vertical transition probability matrices at horizontal sampling

intervals of 10 m. The rest shows the generated images with a subtle modification of the vertical transition

probability (Table 5) for application in the horizontal direction, with different sampling intervals (ranging

from 2.5, 5, 10, 20 and 40 m, respectively,). The right column shows the simulations, and the left column

shows the empirical entropy maps.
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depths. Some have depths of 28.8 m, others are somewhat shorter: about 19.2 m in

depth. Vertical transition probabilities are estimated over a sampling interval of

0.3 m. This sampling corresponds to the minimum thickness of a layer observed in

the borehole. Table 6 displays the vertical transition probability matrix calculated

from 19 boreholes.

The vertical transition probability matrix has a special structure. It is clustered,

i.e., one may observe that states from 1 to 5 are interacting with each other: their

entries are non-zero. There are some other transitions which are zeros, or almost

zeros (e.g., transitions from states 1 to 5 and 6 to 13). This is due to the fact that

some lithologies are present in the top of the image (e.g., 1–5), and are not

present in the bottom of the image and vice versa. It is noticeable that states 1–5

are present at the top of the image and states 6–10 are present at the bottom of

the image. This type of non-stationary data set is typical in many geological

deposits.

The first simulation is performed on the basis of calculating the vertical transi-

tion probabilities from all boreholes with various depths. The postulated forward

horizontal transition probability matrix is set to be a symmetric and diagonally

dominant matrix as in the previous case study. The justification of this choice is

based on the lack of information about the horizontal variability and the common

knowledge about subsurface with a layering structure: this means highly diagonal

elements in terms of transition probability matrix. The diagonal elements are

chosen equal to phii ¼ 0.988 and off-diagonal elements are given equal probabili-

ties: phij ¼ ð1� phiiÞ=ðn� 1Þ ¼ 0:001 where n ¼ 13. The results of the simulation are

shown in Figure 10a and b. They show similar geological configurations as the one

drawn by the geologists (Figure 9 top image). It is important to notice that the

simulation reproduces the white top and bottom spaces as shown in Section A–B.

This means that the concept of having fictitious states to model the sky and the

deep ground works, and the model is capable of handling any top or bottom

topography.

Table 5. Modified vertical transition probability matrix for use in the horizontal direction (application of

Walther’s law)

State

State 1 2 3 4 5 6 7 8

1 0.499 0.500 0.000 0.000 0.001 0.000 0.000 0.000

2 0.000 0.500 0.495 0.001 0.001 0.001 0.001 0.001

3 0.000 0.001 0.840 0.153 0.001 0.001 0.001 0.001

4 0.000 0.003 0.003 0.957 0.001 0.034 0.001 0.001

5 0.000 0.308 0.000 0.000 0.614 0.077 0.001 0.000

6 0.000 0.000 0.000 0.333 0.000 0.666 0.001 0.000

7 0.001 0.001 0.001 0.001 0.001 0.001 0.993 0.001

8 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.994
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Figure 10. Stochastic simulation of the longitudinal section (A–B) of afsluitdijk-Caspar de Roblesdijk, a

part of Waddenzeedijken conditioned on 19 boreholes. Top image shows the geological section drawn by

geologists. Image (a) shows 19 boreholes data. Image (b) shows a simulation conditioned on 19 boreholes

(using forward CMCmodel). Image (c) shows 19 boreholes of the upper part of the A–B section. Image (d)

shows the corresponding simulation of the upper part conditioned on 19 boreholes.
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10.7. SPLITTING THE CROSS-SECTION

Because of the different depths of CPT profiles, it is decided to split the section

horizontally into two parts: an upper part of depth of 19.2 m and a lower part with a

depth of 14.4 m. Figure 10 (c) shows the upper part. The vertical transition prob-

ability matrix for the upper part is calculated and given in Table 7. This matrix is not

significantly different from the vertical transition probability matrix for the whole

section (Table 6), except that states 8, 10 and 11 are not present any more.

Simulation results are displayed in Figure 10(d) for the upper part. The results are

similar to the case where the transition probabilities are calculated from the whole

depth of the boreholes. This is due to the fact that the vertical transitions on the

upper part are almost identical to the ones calculated from the overall depth of

the boreholes. The application of the model on this data set shows consistency in the

model performance.

10.8. HORIZONTAL SAMPLING INTERVALS

We investigated the optimum sampling interval that is suitable in the horizontal

direction. In this experiment, 13 boreholes are used for conditioning to speed up

the simulations since there is no significant difference in the simulation results

between 19 and 13 boreholes. The horizontal transition probability matrix is

symmetrical and diagonally dominant with pii ¼ 0.988. Sampling intervals of 5,

10, 20, 40, and 100 m are investigated. Figure 11 shows the simulation results.

There is no significant difference between the simulations. This means that for

symmetric and highly diagonally dominant horizontal transition probability

Table 6. Vertical transition probability matrix estimated over sampling intervals of 0.3 m form 19

boreholes

State

State 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.696 0.186 0.098 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.045 0.849 0.006 0.016 0.033 0.000 0.029 0.000 0.000 0.000 0.000 0.003 0.019

3 0.000 0.081 0.790 0.032 0.081 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.000

4 0.030 0.121 0.031 0.727 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.171 0.000 0.011 0.784 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.011

6 0.000 0.000 0.000 0.000 0.000 0.300 0.700 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.036 0.813 0.022 0.043 0.029 0.007 0.000 0.050

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.889 0.000 0.000 0.000 0.000 0.111

9 0.000 0.000 0.000 0.000 0.000 0.043 0.261 0.000 0.696 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.143 0.285 0.000 0.143 0.429 0.000 0.000 0.000

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.998 0.000 0.000

12 0.042 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.950 0.000

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.998
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matrices, changing the horizontal sampling intervals does not influence the results.

However, the entropy maps show reduction of uncertainty with increasing sam-

pling intervals. This demonstrates the usefulness of the entropy maps to quantify

uncertainties.

10.9. WALTHER’S LAW

In this experiment, we investigated the use of the downward vertical transition

probability matrix in the horizontal direction with different sampling intervals.

Conditioning is performed on 13 boreholes as in the previous experiment. Figure 12

shows simulation results based on that concept. Four sampling intervals are utilized

ranging from 10, 20, 40, and 100 m. Best results in terms of connectivity and simi-

larity to geologist predictions is observed with dx ¼ 100. Entropy maps (Figure 12

left column) emphasised the reduction of uncertainty by increasing the sampling

intervals.

10.10. COMPARISON OF VARIOUS COUPLED MARKOV CHAIN MODELS (FCMC, BCMC

AND FBCMC)

Figure 13 shows the application of FCMC, BCMC, and FBCMC with conditioning

on 8 and 13 boreholes, respectively. The sampling interval is set to 10 m, and a

highly diagonally dominant horizontal transition probability matrix with phii ¼ 0:988

is applied. The results show that conditioning on less boreholes leads to more

connectivity of the geological units. This is accounted for by the high diagonal

dominancy of the transition probability matrix. There is no noticeable difference

between FCMC, BCMC, and FBCMC in terms of geological configurations. This is

mainly due to the horizontal layering structure of the site.

Table 7. Vertical transition probability matrix estimated over a sampling interval of 0.3 m for the upper

part of the image from 19 boreholes from Figure 10c

State

State 1 2 3 4 5 6 7 9 12 13

1 0.696 0.186 0.098 0.010 0.010 0.000 0.000 0.000 0.000 0.000

2 0.046 0.854 0.003 0.017 0.033 0.000 0.026 0.000 0.000 0.020

3 0.000 0.083 0.800 0.033 0.083 0.000 0.000 0.000 0.000 0.000

4 0.030 0.121 0.030 0.727 0.091 0.000 0.000 0.000 0.000 0.000

5 0.000 0.170 0.000 0.011 0.784 0.000 0.023 0.000 0.000 0.011

6 0.000 0.000 0.000 0.000 0.000 0.333 0.667 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.038 0.797 0.076 0.000 0.089

9 0.000 0.000 0.000 0.000 0.000 0.053 0.211 00.00 0.000 0.000

12 0.042 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.950 0.000

13 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.998

Domain dimensions 2500 · 19.2 m.
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Figure 11. Sensitivity analysis of the horizontal sampling intervals using a fixed symmetric horizontal

transition probability matrix with diagonal elements phii ¼ 0.988. The top right most image shows 13

boreholes. The rest of the images are final images generated by the FCMC model based on 30 realizations

and conditioned on 13 boreholes with different horizontal sampling intervals (right column), and empirical

entropy (left column).
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Figure 12. Sensitivity analysis on the application of Walther’s Law. The images are generated with a

subtle modification of vertical transition probabilities (reducing some zeros) for application in the hori-

zontal direction with different sampling intervals ranging from 10, 20, 40 and 100 m respectively. The right

column shows the final simulation images and the left column shows the empirical entropy maps.
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10.11. EFFECT OF CONDITIONING ON THE NUMBER OF BOREHOLES

Figure 14 shows simulation results performed using FCMC with a high diagonal

dominancy horizontal transition probability matrix ( phii ¼ 0.988), a horizontal

sampling interval of 10 m, and conditioning on a number of boreholes of 8, 13, and

19, respectively. It is obvious that increasing the number of boreholes leads to

improving the simulation results. There is no noticeable difference when condi-

tioning is performed on 13 or 19 boreholes. This means that 13 boreholes were

sufficient to characterize the heterogeneity at the site.

10.12. SITE DESCRIPTION AND PARAMETER ESTIMATION

Another application is made at the Delaware River and its underlying aquifer system

in the vicinity of the Camden metropolitan area, New Jersey, USA. Data used is

collected from the literature (Navoy, 1991). The geological units associated with the

aquifer system in the vicinity of the Camden metropolitan area are shown in

Figures 15 and 16. We give a short description of the lithologies that control the

hydrological properties. The bed rock consists of crystalline rocks of Precambrian to

Paleozoic age. A thick sequence of non-marine gravels, sands, silts and clays is

deposited upon the bedrock surface. These sediments are fluvial-deltaic and repre-

sent deposition within a sub-aerial delta plain (Owen and Sohl, 1969). The gravel and

sand units are channel fill deposits, and some of the finer-grained deposits are not

extensive and often occur in minor lenses. There are however, two laterally extensive

clay units within the formation. These clay units extend over a wide area and may
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Figure 13. Comparison between various coupled Markov chains models conditioned on eight boreholes

(left column): (a) FCMC, (b) BCMC and (c) FBCMC and 13 boreholes (right column): (d) FCMC, (e)

BCMC and (f) FBCMC respectively.
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represent extra basinal changes (Navoy, 1991). Hydrogeological studies show that

the aquifer system at the site consists of upper, middle and lower sand aquifers

separated by two confining units as shown in Figure 15.

For simulation of aquifer heterogeneity, a distinction of the various lithologies is

made (Navoy, 1991). Seven lithologies are considered. These lithologies are coded

according to Table 8. Two sections are considered. A cross-section A–A0 perpen-

dicular to the river and a longitudinal section F–F0 along the river, shown in Fig-

ure 15 and Figure 16, respectively. The sections cover an area of 20320 · 368 ft.

(6193.2 m · 112.1 m) for section A–A0 and an area of 151166.7 · 350 ft.
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Figure 14. Effect of number of conditioning boreholes (eight boreholes ‘first row’, 13 boreholes ‘second

row’ and 19 boreholes ‘third row’ respectively) using FCMC on the performance of the model.

Figure 15. Cross-section A-A¢ of the Delaware River and its underlying aquifer system in the vicinity of

the Camden metroplitan area, New Jersey ( from Navoy, 1991).
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(46073.4 m · 106.7 m) for section F–F0. Boreholes are shown in the figures. Section

A–A0 contains 11 boreholes and section F–F0 contains 21 boreholes. The sampling

interval in the vertical direction is chosen equal to 4 ft, which corresponds to the

smallest thickness observed in the boreholes. A sensitivity study similar to the

previous cases is performed on sections A–A and F–F0, respectively. In this case

study there are no geological maps to judge the model performance. Therefore, a

cross-validation technique (referenced by Deutsch and Journel (1992)) is applied to

evaluate the model performance.

10.13. SENSITIVITY ANALYSIS ON CROSS-SECTION A-A¢ FOR THE DEGREE OF DIAGO-

NAL DOMINANCY OF THE HORIZONTAL TRANSITION PROBABILITY MATRIX

A conditional simulation of section A–A0 is performed. The transition probability

matrix in the vertical direction is calculated from the given 11 boreholes. table 10

presents the vertical transition probability matrix calculated over sampling intervals

of 4 ft.

Figure 17 shows simulation results, which have been performed using a diagonally

dominant horizontal transition probability matrix over a horizontal sampling

Figure 16. Longitudinal section F-F¢ of the Delaware River and its underlying aquifer system in the

vicinity of the Camden metroplitan area, New Jersey (from Navoy, 1991).

Table 8. Coding of lithologies in aquifer system

Lithology Code

Sand and gravel 1

Sand 2

Clayey/silty sand 3

Silt 4

Sandy/silty clay 5

Clay 6

Bedrock 7
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interval of 80 ft, coupled with the vertical one in Table 9. The diagonal elements are

chosen as phii ¼ 0.603, 0.699, 0.801, 0.908 and 0.986, respectively. The off-diagonal

elements of the real states (from 1 to 7) are calculated from phii ¼ 1�
ðphii=ðn� 2Þ þ 0:001Þ, where the value 0.001 is the transition probability phi8 from any

state to the artificial state 8 for i=1,. . .,7 and therefore, ph88 ¼ 0.993. It is obvious

that increasing the diagonal elements leads to higher connectivity of the geological

units (Figure 17 right column), and reduction in the local entropy (Figure 17 left

column).

10.14. WALTHER’S LAW AND HORIZONTAL SAMPLING INTERVALS

Figure 18 shows simulation results performed using four different sampling intervals

of 40, 80, 280, and 400 ft, respectively, and a horizontal transition probability matrix

that is equal to the vertical one (Table 9).The results have noisy and inclined features

at small sampling intervals. The noise smears out for large sampling intervals at

280 ft and the inclination levels off. The inclination in the results has two reasons:

First, the geometrical condition due to the unilateral character of the coupled

Markov chain model. Second, a probabilistic condition which plays a role when high
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Figure 17. Sensitivity analysis (for section A-A¢) for the degree of diagonal dominancy of the horizontal

transition probability matrix. Top right image shows the 11 boreholes. The images b, c, d and e with

phii ¼ 0.603, 0.699, 0.801, 0.9, 0.908 and 0.986, respectively are the images generated by the FCMC model

based on 30 realizations, and conditioned on 11 boreholes using horizontal and diagonally dominant

transition probability matrices over a horizontal sampling interval of 80 f. Left columns show the

corresponding empirical entropy maps.

MODELLING SUBSURFACE HETEROGENEITY 745



diagonal elements of transition probability matrices in both vertical and horizontal

directions are used. The noise at small sampling intervals is due to the high number

of multiplications of the transition matrix by itself. This can lead to the stationary

distribution of the chain, and generation of cells that are no longer dependent on

borehole information. It is worth mentioning that the simulation in Figure 17(e)

with phii ¼ 0.908 and a horizontal sampling interval of dx ¼ 80 ft is similar to sim-

ulation results in Figure 17(d) with phik ¼ pm
ik and dx ¼ 280 ft. This leads to the

conclusion that similar simulation results, in terms of geological configurations, can
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Figure 18. Sensitivity analysis (for section A-A¢) for horizontal sampling intervals using a fixed hori-

zontal transition probability matrix which is equal to the vertical one (Application of Walther’s law). Top

image shows the 11 boreholes, and the rest are images generated by the FCMC model based on 30

realizations and conditioned on 11 boreholes with different horizontal sampling intervals.
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be reached by using a diagonally dominant horizontal transition probability matrix

with small sampling intervals, or by using almost identical horizontal and vertical

transition probability matrices with larger sampling intervals.

10.15. COMPARISON OF VARIOUS COUPLED MARKOV CHAIN MODELS (FCMC, BCMC

AND FBCMC)

Figure 19 shows a comparison between various coupled Markov chain models on

section A–A¢. The three methods FCMC, BCMC and FBCMC are applied condi-

tioned on 11 boreholes with forward horizontal transition probability matrix equal

to the vertical one over a sampling interval of 280 ft. Generally speaking, there is no

noticeable difference between the three models. However, one could notice some

differences between the three models when the conditioning boreholes are far apart.

Figure 19 with FCMC shows inclination from left to right of the black lithology.

There is a slit inclination from right to left in Figure 19 with the backward model

(BCMC), and there is a wavy pattern in Figure 19 with the forward–backward

model (FBCMC). This behaviour is due to the geometrical character of these models

(asymmetry) which is adapted to fit borehole data and values of the transition

probabilities. This leads us to rely on some prior information about the sedimen-

tation direction before one implements one of these models.

10.16. CROSS-VALIDATION

Figure 20 shows the application of the so-called ‘‘cross-validation’’ technique (ref-

erenced by Deutsch and Journel (1992)) on section A–A0. In this technique, one

systematically excludes some of the data from the given data set (boreholes), and

performs the simulation using the remaining data, and then simulates the data that

was excluded. In this way, a judgment of the model performance can be made. In

section A–A0, seven boreholes are considered for performing conditioning. These

Table 9. Vertical transition probability matrix sampled over 4 ft (for section A–A0)

State

State 1 2 3 4 5 6 7 8

1 0.724 0.066 0.053 0.013 0.026 0.092 0.026 0.000

2 0.044 0.759 0.030 0.000 0.034 0.133 0.000 0.000

3 0.000 0.180 0.620 0.000 0.100 0.080 0.020 0.000

4 0.091 0.091 0.000 0.818 0.000 0.000 0.000 0.000

5 0.048 0.096 0.036 0.000 0.711 0.084 0.024 0.000

6 0.022 0.124 0.022 0.000 0.051 0.753 0.028 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

8 0.026 0.051 0.026 0.013 0.013 0.000 0.000 0.872
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boreholes are shown in Figure 20, while the rest of boreholes are simulated (four

boreholes) using the three models. The simulated boreholes are rather satisfactory.

There are mismatches between boreholes data and the simulated boreholes. The

influence of directionality is more stronger in this case when compared with the case

of conditioning on the 11 boreholes. This emphasizes that increasing the distance

between boreholes leads to a stronger directional dependency.

10.17. SENSITIVITY ANALYSIS OF SECTION F–F0

For simulation of section F–F0, the vertical transition probability matrix is calcu-

lated from 21 boreholes and given in Table 10. Figure 21 shows simulation results
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Figure 19. Comparison of various models for section A-A¢. Top right most image shows 11 boreholes.

The first row shows the simulation with FCMC model. Horizontal sampling intervals¼280 feet and fixed

horizontal transition probability matrix equals vertical probability matrix. Second row shows the simu-

lation with BCMC and last row shows FBCMC simulation.
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performed using four different sampling intervals of 100, 200, 400, and 800 ft,

respectively, and a horizontal transition probability matrix that is equal to the

vertical one (Table 10), with subtle changes of some 0’s to 0.001. The results with

small sampling intervals show strong inclinations. As might be expected, the incli-

nation decreases with increased sampling. Figure 22 shows simulation results which

have been performed on section F–F0 using diagonally dominant transition proba-

bility matrices in the horizontal direction, and horizontal sampling interval of 80 ft.

Increasing the degree of diagonal dominancy reduces the inclination angle of the

geological structures and the entropy decreases. Figure 23 shows simulation results

of FCMC, BCMC and FBCMC conditioned on 21 boreholes. Simulations show

different orientation in the predicted geological configurations. This behaviour is due

to the geometrical character of the CMC model (asymmetry) which is adapted to fit

borehole data and the values of the diagonal elements of the transition probabilities.

Figure 24 shows the relation between the tangent of the angle of inclination and

the horizontal scale of the site from some collected data in this study, and a study

made on the MADE site (Elfeki and Rajabiani, 2002). The graph shows that at large

scales the angle is almost zero, showing a layered structure. However, at small scales

the angle increases. From an engineering point of view, it could be useful to find an

empirical relation between the scale of the site and the relation between the hori-

zontal and vertical sampling intervals. This would help to use the vertical transition
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Figure 20. Cross-validation for section A-A’. Top left image shows seven conditioning boreholes. Top

right most shows boreholes for cross-validation. The second row left column shows the simulation with

FCMC model conditioned on seven boreholes (right image shows the simulated boreholes). The third row

left image shows the simulation with BCMC model conditioned on seven boreholes (right image shows the

simulated boreholes). The last row left column shows the simulation with FBCMC model conditioned on

seven boreholes (right image shows the simulated boreholes).
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probability matrix in the horizontal direction with some scaling of the vertical

transition and would make use of Walther’s law in a quantitative sense. However, it

will still need further application of the CMC model at various sites to establish this

relation.

11. Conclusions

This research focused on an extension and intensive applications of the two-

dimensional coupled Markov chain model developed by Elfeki and Dekking (2001).

Three computer codes have been developed to implement different coupled Markov

chain algorithms. Namely, the fully forward-coupled Markov model that is referred

to as (FCMC), the fully backward-coupled Markov model (BCMC), and the for-

ward-backward model (FBCMC). Many issues are addressed, such as: sensitivity

analysis of optimal sampling intervals in horizontal and lateral directions, directional

dependency, various horizontal transition probability matrices, degree of diagonal

dominancy of the horizontal transition matrix, use of Walther’s law to describe

lateral variability, effect of conditioning on number of boreholes, stability of the

Monte Carlo realizations various implementation strategies, use of cross validation

techniques to evaluate model performance and image division for statistically non-

homogeneous deposits. The choice between these models for field applications de-

pends on geological knowledge such as the direction of the sedimentation process in

the fluvial environment. The following conclusions can be made for these case

studies:

1. Entropy maps are good tools to show places where high and low uncertainties

are present, so can be used for the design of sampling networks to reduce

uncertainty at highly uncertain locations. It can also be useful in order to make

an optimal choice of the locations of a new borehole.

2. Symmetrical and diagonally dominant horizontal transition probability matrices

over a proper horizontal sampling interval provide plausible results from a

geological point of view. In the Afsluitdijk-Lemmer and Afsluitdijk-Caspar de

Roblesdijk case studies, symmetrical and diagonally dominant horizontal tran-

Table 10 Vertical transition probability matrix sampled over 4 ft (for section F–F0)

State

State 1 2 3 4 5 6 7 8

1 0.800 0.047 0.030 0.003 0.020 0.083 0.017 0.000

2 0.074 0.754 0.039 0.027 0.043 0.051 0.012 0.000

3 0.073 0.056 0.789 0.000 0.047 0.026 0.009 0.000

4 0.045 0.068 0.045 0.795 0.023 0.023 0.000 0.000

5 0.048 0.096 0.036 0.000 0.711 0.084 0.024 0.000

6 0.054 0.061 0.034 0.000 0.027 0.797 0.027 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

8 0.008 0.055 0.013 0.004 0.008 0.000 0.000 0.911
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sition probability matrices (phii ¼ 0.993 and 0.988, respectively) over a sampling

interval of 10 m seem to give fairly good results when compared with geologist

predictions.

3. The choice of sampling intervals in the horizontal direction is crucial. But this

choice can only be made by performing a sensitivity analysis using several

sampling intervals. Very small sampling intervals with respect to the distance
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Figure 21. Sensitivity analysis (for section F-F’) on horizontal sampling intervals using a fixed horizontal

transition probability matrix, which is equal to the vertical one (Application of Walther’s law). Top image

shows the 21 boreholes, and the rest are the images generated by the FCMC model based on 30 real-

izations and conditioned on 21 boreholes with different horizontal sampling intervals.
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between the boreholes will lead to loss of lateral continuity of the geological

features. However, very long sampling intervals will lead to unrealistic con-

nectedness. For Afsluitdijk-Lemmer and Afsluitdijk-Caspar de Roblesdijk a

value of 10 m is a reasonable choice.

4. Heavily sampled sites may have redundant data that does not improve site

characterization. For Afsluitdijk-Caspar de Roblesdijk, 13 boreholes over a

distance of 2500 m (out of 19) are sufficient to delineate the global geological

configuration at the site. The concept of data redundancy is also supported by

early work by Eggleston et al. (1996) at Cape Cod and Borden site.

5. Application of Markov models on the Delaware river and its underlying aquifer

system (section A–A0) shows that with a horizontal transition probability matrix

that is equal to the vertical one, small sampling intervals (40 f) lead to noisy and

highly inclined geological features while, large sampling intervals (280 and 400 f)

produce lateral continuity of the geological features and less inclination.

6. Similar simulation results, in terms of geological configurations, can be ob-

tained by using a diagonally dominant horizontal transition probability ma-

trix with small sampling intervals, or by using almost identical horizontal and

vertical transition probability matrices with larger sampling intervals. For

section A–A0 in the Delaware river case study, similar simulation results are

pii = 0.603

pii= 0.699

pii = 0.801

pii = 0.908

0

0.25

0.5

0.75

1

1.25

1.5

1.75

pii = 0.986

1

2

3

4

5

6

7

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

-300

-200

-100

0

(a)

(b)

(c)

(d)

(e)

(f)

Figure 22. Sensitivity analysis (for section F-F’) on the degree of diagonal dominancy of the horizontal

transition probability matrix. Top right image shows 21 boreholes. The images b, c, d E and f with phii¼
0.603, 0.699, 0.801, 0.908 and 0.986, respectively are the images generated by the FCMC model based on

30 realizations and conditioned on 21 boreholes using horizontal and diagonally dominant transition

probability matrices. The left column shows the corresponding empirical entropy maps.
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reached when using a diagonally dominant horizontal transition probability

matrix with sampling intervals of 80 ft, and horizontal transition probability

matrix equal to the vertical transition probability matrix with sampling

intervals of 280 or 400 ft.

7. FCMC, BCMC and FBCMC with the same horizontal and vertical transition

probability matrices with horizontal sampling intervals of 280 f do not show any

noticeable difference in terms of global geological features for section A–A0.

8. The so-called ‘‘cross-validation’’ technique (referenced by Deutsch and Journel

(1992)) seems satisfactory for validation of Markov models. However, a quan-

titative measure should be assigned to evaluate the model performance. This will

be considered in future research.
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Figure 23. Comparison of various models for section F-F’. Top right most image shows 21 boreholes.

The first row is the simulation with FCMC model. Horizontal sampling intervals¼400 f and fixed hori-

zontal transition probability matrix equals the vertical probability matrix. Second row shows the simu-

lation with BCMC and last row shows FBCMC simulation.
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9. Application of various coupled Markov chain models on section F–F¢ shows
noticeable differences in the simulation results in the regions with less boreholes.

However, there is no significant difference in regions with dense boreholes. This

behaviour is due to the geometrical character of these models (asymmetry),

which is adapted to fit borehole data, values of transition probabilities and sizes

of the sampling intervals. This leads to the conclusion that prior knowledge

about the sedimentation direction can be helpful when there is lack of boreholes

to decide about which model can be used.

10. The concept of having fictitious states to model the sky and the deep ground

works and the model is capable of handling any top or bottom topography.

Appendix: The Backward Chain

It is known that in case the chain is aperiodic and irreducible, the stationary

probabilities wl of the chain exist, and are all strictly positive. In this case the

backward chain has transition probabilities,
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Figure 24. Relation between the angle of inclination of the geological structure and the field scale of the

site.
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