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Abstract. Accurate detection of a landfill leakage through a few monitoring well is rather 
difficult and complicated due to the uncertainty of subsurface heterogeneity. The incomplete 
knowledge of hydrogeologic characteristics at a site is one of the major reasons for the failure 
of the monitoring networks at landfill sites. In this study, hydraulic conductivity is assumed to 
be the major contributor to uncertainty at the landfill site. The influence of the spatial 
variability of hydraulic conductivity on contaminant plume detection has been investigated. 
Logarithm of hydraulic conductivity field is modeled in two ways: 1) as a Gaussian stationary 
distribution with mean, variance and a correlation length, 2) as a non-Gaussian distribution 
using a coupled Markov chain model. The detection probabilities of the contaminant plume, 
which were determined by using the two approaches, have been compared. 
 
1. INTRODUCTION 
 
   In case of a landfill, concern often centers on the risk of groundwater contamination and the 
risk of contamination from a landfill can be reduced in several ways. The landfill can be 
designed to minimize the chance of leakage or it can be located in such a hydrogeological 
environment that restrains the transport of contaminants into groundwater resources. Even so 
the risk of the contamination cannot be completely eliminated. Therefore in case of a leakage 
release, presence of a monitoring network early detection of the contaminant is vital for taking 
action to prevent further contamination. Regulations both by European Community and EPA 
require the installation of sufficient detection monitoring wells that can detect a contaminant 
leak before it crosses the compliance boundary. Minimum requirements are three 
downgradient wells, one upgradient well and a compliance boundary may be up to 150 m 
from the landfill. The post closure monitoring time mentioned is 30 years whereas the 
position, number (more than the minimum requirement) and depth of the monitoring wells are 
proposed by the landfill owners or operators and by local authorities. There is no recognition 
of uncertainty in this requirement. However, in reality, limited subsurface exploration, 
incomplete knowledge of hydrogeologic characteristics at a site together with the complex 
nature of the facility itself makes groundwater flow and contaminant paths hard to predict. A 
plume can travel between monitoring wells and go undetected. In other words, all these 
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uncertainties have a great impact on the efficiency of groundwater monitoring networks. 
Different approaches for designing groundwater quality monitoring networks have been 
proposed in the literature. These approaches are generally based on geostatistical methods, 
optimization methods and methods based on extensive simulation. Rouhani and Hall (1988) 
used variance reduction analysis, media ranking and risk ranking for groundwater sampling in 
design of a regional groundwater quality network. Haugh et al. (1989) presented a 3D 
application of geostatistical methods where random fields and stochastic simulation were used 
to assess the positions and spacing of monitoring wells along the perimeter of a waste 
management facility. In both studies geostatistical tools are used efficiently however, they fall 
short of providing a systematic and consistent approach to design groundwater quality 
monitoring systems and no groundwater flow or contaminant transport models are used. 
   Massmann and Freeze (1987a and b) developed a comprehensive framework for landfill 
design that incorporated uncertainty and allowed for the evaluation of selected network 
alternatives. They focused on a risk-cost-benefit analysis for waste management facility in the 
perspective of the owner/operator to make design decisions for facility.  
  Hudak and Loaiciga (1993) presented a multiobjective method that can be used to locate 
wells to provide detection of contamination and protection of drinking water sources. 
Uncertainty was not considered. Meyer et al. (1994) presented a multiobjective stochastic 
optimization approach to determine the 2D location of monitoring wells incorporating 
uncertainty in hydraulic conductivity and source location through Monte Carlo simulations. 
This work has been extended to 3D using same approach as well as incorporating local 
dispersion by Storck et al (1994). On the other hand, Angulo and Tang (1999) approach the 
detection monitoring problem from a decision analysis perspective. They used Monte Carlo 
simulation coupled with groundwater flow and contaminant transport models to evaluate the 
reliability of monitoring systems. 
   In the above-mentioned studies, in which the uncertainty due to subsurface heterogeneity 
has been incorporated, hydraulic conductivity field has been modeled as a stationary Gaussian 
distribution.  In this paper, different from the previous studies hydraulic conductivity field is 
not only modeled as a Gaussian stationary distribution with mean, variance and a correlation 
length but also modeled as a non-Gaussian distribution using Coupled Markov Chain model 
developed by Elfeki and Dekking (2001). The detection probabilities of the contaminant 
plume, which are determined by two approaches, have been compared.  
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 2. CHARACTERIZATION METHODOLOGIES 
 
   As mentioned above there always exists some amount of uncertainty in the description of 
the contaminant transport. In this study, hydraulic conductivity is assumed to be the major 
contributor to uncertainty due to subsurface heterogeneity. Contaminant transport in 
groundwater especially affected by the spatial variability of hydraulic conductivity. The 
influence of that on contaminant plume detection has been investigated. Multiple realizations 
of random hydraulic field have been generated based on a Monte Carlo method. By coupling 
Monte Carlo simulation with a 2D steady state groundwater flow and a random walk particle-
tracking model, a contaminant plume that leaks from the landfill has been simulated for each 
realization. Logarithm of hydraulic conductivity field is modeled in two ways: 1) as a non-
Gaussian distribution using a Coupled Markov chain model, 2) as a Gaussian stationary 
distribution with mean, variance and a correlation length.  
 
2.1. Non-Gaussian (Markovian) Heterogeneity Model 
   A geological setting of discrete four geological units, have been considered during 
generation of hydraulic conductivity fields. In the Coupled Chain Markovian model the 
heterogeneity of the subsurface have been modeled by two transition probability matrices and 
the hydraulic conductivity within each geological unit is assumed to be constant. A horizontal 
transition probability matrix describes the variation in the geological materials in horizontal 
direction whereas a vertical transition probability matrix describes the variations in the 
vertical directions. Transition probabilities can be defined as the relative frequency of a 
transition from a certain state to another state, which means in this case transition from a 
geological unit to another in the geological system. These probabilities are expressed by 

where  is the probability of the transition from geological unit l to unit k, and 
superscript d indicates the transition direction. Transition frequencies between the units are 
calculated by counting how many times a given geological unit is followed by itself or the 
other units in the system and then divided by the total number of transitions,    
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where is the number of  observed transition from unit l to unit k in direction d. The 
cumulative transition probability matrices are computed by adding each probability value to 
each succeeding value, moving from left to right within each row and the probability values in 
each row progressively sum to 1. This is expressed by the formula, 
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Details on coupled Markov chain model are given by Elfeki (1996). The geological structure 
generated by using the coupled Markov chain model has been used for solving the flow and 
transport simulations. A Monte-Carlo based approach generates multiple realizations of 
geological configuration, where hydraulic conductivities are later assigned to each geological 
unit leading to a hydraulic conductivity field that is called here  a non-Gaussian (Markovian) 
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field. By coupling Monte Carlo simulation with a finite difference groundwater flow and a 
random walk particle-tracking model, a contaminant plume has been simulated for each 
realization and detection probability is determined. 
 
2.2. Gaussian Heterogeneity Model 
   A log normally stationary hydraulic conductivity field with mean, variance and a correlation 
length is generated. In order to generate stationary Gaussian field, which is statistically 
equivalent to the non-Gaussian (Markovian) field generated by coupled Markov chain model, 
the following parameter estimation approach is followed. 
   The first order moment (mean) is obtained by weighted average as, 
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where, is the weighted mean of all the units, is the mean of individual unit i, is the  
weight (i.e. the percentage of occurrence of this unit within the whole domain) and n is the 
number of the units in the geological system (i.e. 4 in our system) 
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   The second order moment (variance) is calculated by, 
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   Similar to the previous Markovian case a Monte-Carlo based approach is used to generate 
multiple realizations of random hydraulic field based on Gaussian distribution with the 
equivalent parameters (mean, variance and correlation length). The correlation length is 
computed by fitting an anisotropic exponential autocorrelation function to the calculated 
autocorrelation from the non-Gaussian (Markovian field), whereas the mean and variance 
have been calculated as described above. Afterwards, the flow and transport problems are 
solved for each realization in order to simulate a contaminant plume released from the 
landfill. 
  
3.  HYPOTHETICAL PROBLEM 
 
   Numerical experiments are carried out using a model of generic landfill and groundwater 
system. Although it is not clear whether the results obtained with such a generic model 
reflects the real world case but still important aspects of many sites can be incorporated in 
such a model. Regulations governing the groundwater monitoring network at a landfill site 
and common current practice are considered during the model construction. A plan view of 
the model domain is shown in Figure 1. The overall dimensions of the domain are 200 m both 
in x and y- direction. Nodal spacing, ∆x and ∆y are equal to 2 m in both directions. A 
rectangular landfill of 40 m x 60 m is located at the left end of the modeled area. A single raw 
monitoring system of five wells is located 30 m downgradient of the landfill. The aquifer is 
assumed to be confined with a known constant hydraulic head at the left boundary 11 m and 
at the right end with a value of 10.8 m, resulting in a macroscopically constant hydraulic 
gradient of 0.001. The porosity of the medium is assumed to be 0.25. The pore-scale 
longitudinal dispersivity was set to 0, 0.5 and 1.5 respectively and the ratio between the 
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transversal and longitudinal dispersivity is assumed to be 1/10 (Bear, 1972). 500 particles are 
used in the tracking routine and contaminants are considered to be conservative. Leakage is 
assumed to be from a small area of 4.0 m x 4.0 m and located as seen in Figure 1.        
  
   Four different geological units are considered while generating a geological structure by 
using coupled Markov chain model. The probabilities used to generate the sample are shown 
in Table 1 and the geological pattern of one realization is displayed in Figure 2. The hydraulic 
conductivity fields are generated by assigning each geological unit a hydraulic conductivity 
value. Two hypothetical test cases are investigated. Relatively low and high contrasts in 
hydraulic conductivity are considered respectively (see Table 2). The simulation parameters 
in Table 3 are estimated from non-Gaussian (Markovian) field. The statistically equivalent 
Gaussian fields for both high and low contrast cases have been generated by parameters 
shown in Table 3. The Gaussian and non-Gaussian (Markovian) hydraulic conductivity fields 
for low contrast case are displayed in Figure 3 and 4 respectively. 
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Figure 2. Single realization of geological 
sample used in numerical experiments. 

Figure 1. Plan view of hypothetical test. 
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Input parameters used to generate the geological mode shown in Figure 2. 
 
Length of the domain in x-direction (m)=  200.0 
Width of the domain in y-direction (m) =  200.0 
Nodal spacing in x-direction, ∆x (m)    =  2.0 
Nodal spacing in y-direction, ∆y (m)    =  2.0 
Number of units       =  4 

  
Horizontal Transition Probability Matrix   Vertical Transition Probability Matrix 
  
Unit  1 2 3 4   Unit 1 2 3 4 
1      0.960   0.020   0.010   0.010    1      0.400   0.200   0.200   0.200        
2      0.010   0.980   0.020   0.010         2      0.200   0.400   0.200   0.200        
3      0.020   0.020   0.940   0.020         3      0.200   0.200   0.400   0.200 
4      0.010   0.010   0.010   0.970         4      0.200   0.200   0.400   0.200 
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Table 2 
Hydraulic conductivities of the units in non-Gaussian (Markovian) field.  
 
Unit Color on the map wi Low contrast High contrast 
 
1 Very light gray 0.24 80 m/day 100 m/day 
2 Light gray 0.25 50 m/day 10 m/day 
3 Dark gray 0.31 20 m/day 1 m/day 
4 Black 0.20 10 m/day 0.1 m/day 
 
 
 
 
Table 3 
Estimated simulation parameters for generation of statistically equivalent Gaussian fields. 
 
Parameter Low Contrast  High Contrast 
 
Km  39.9 m/day  26.8 m/day 
σK  26.7 m/day  41.2 m/day
Y=ln K 3.5   2.68  
σY  0.61    1.1 
λx  25.0 m   25.0 m
λy  2.0 m    2.0 m 
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Figure 3. Non-Gaussian conductivity field 
with low contrast. 
 
4. RESULTS AND DISCUSSION 

 

Figure 4. Gaussian conductivity field with low 
contrast. 
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   The detection probabilities of each well for Gaussian and Non-Gaussian (Markovian) field 
both in low and high contrast in hydraulic conductivity cases are presented in Figures 5, 6, 7 
and 8. Tendency for symmetric pattern observed in the graphs are due to the symmetric 
configuration of the monitoring wells (See Figure 1). Yet, the discrepancies despite the 
symmetry are related to the relatively less amount of the particles considered in the model.  
The reason for monitoring well MW3 has the highest detection probability in all cases is 
being just across the plume. In the absence of dispersion, and in case of low contrast non-
Gaussian (Markovian) field, MW3 has a relatively higher detection probability compared to 
Gaussian field with low contrast, whereas the rest of the wells are almost zero.  
   On the other hand for high contrast case monitoring well MW3 has more or less equivalent 
detection probability in both Gaussian and non-Gaussian (Markovian) conductivity fields 
while monitoring wells MW2 and MW4 have higher detection probabilities in non-Gaussian 
(Markovian) conductivity field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Detection probabilities of five wells 
in low contrast non-Gaussian (Markovian) 
case. 
 

Figure 6. Detection probabilities of five wells 
in high contrast non-Gaussian (Markovian) 
case. 
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Figure 7. Detection probabilities of five wells 
in low contrast Gaussian case. 

Figure 8. Detection probabilities of five wells 
in high contrast Gaussian case. 

   This can be most likely due to some channels being rather connected in Markovian field 
compared to Gaussian field (see Figure 3 and 4). On the other hand, in the presence of 
dispersion the detection probabilities of the monitoring wells in Gaussian and Markovian 
fields are relatively similar for low contrast case. However the detection probabilities are 
somewhat higher in Gaussian case. Even so in general there is a clear propensity that 
detection probability of the wells increase as dispersivity of medium increases. This is due to 
the fact that dispersivity of the medium has a great influence on the plume width. As the 
dispersivity of the medium increases the plume enlarges and, hence there is a higher chance of 
detecting the plume. 
 
CONCLUDING REMARKS  
 
   The results of this study show that the detection probabilities in non-Gaussian and Gaussian 
cases are slightly different. This can be interpreted as in case of less discrete variation 
between the geological units, in other words when there is no particular geological feature 
such as a sand channel or inclusions etc., subsurface heterogeneity can be modeled of based 
on a Gaussian stationary distribution. This approach is common and attractive from statistical 
point of view and also quite satisfactory. However, in case of complex geology with particular 
features using geologically based stochastic models such as coupled chain Markov model may 
provide more realistic results. Therefore it will be useful to investigate the influence of 
particular geological features, for instance a sand channel, on detection probability of a 
landfill leakage. Furthermore, this study also points out that dispersivity of the medium has a 
great influence on detection probability. 
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