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Abstract

This paper presents a framework for coupling the stochastic technique that is called ‘coupled Markov chain’ (Elfeki and

Dekking, 2001), which is used for stochastic site characterization, with numerical groundwater flow and transport models. The

purpose is to study the reduction of uncertainty on concentration distribution by conditioning on a number of boreholes using

the Monte-Carlo approach. This study addresses some issues that have not been given much attention in the literature, namely:

(1) using the so-called CMC (Coupled Markov Chain) model for modeling heterogeneity as a non-Gaussian field characterized

by multi-dimensional transition probabilities rather than variograms or autocorrelation functions, (2) considering a

hydrodynamic flow field that is non-uniform in the mean flow due to boundary conditions where flow is driven from the

left top corner moving to the right domain boundary, and (3) utilizing the concept of forward modeling in the framework of

conditioning on geological borehole information (geometrical configuration), rather than conditioning on direct measurements

of the hydrogeological parameters (e.g. hydraulic conductivity, porosity, etc.).

The model is applied on an unconsolidated deposit located in the central Rhine-Meuse delta in the Netherlands. The data at

the site is merely used to calculate the transition probabilities used in the CMC model to generate a reference geological model

for the rest of the analysis. The results show the potential applicability of the CMC model in reducing the uncertainty in

concentration fields when a sufficient number of boreholes are available. Reproduction of peak concentrations, breakthrough

curves and plume spatial moments require many conditioning boreholes (in this case study 25–31 boreholes with 10–8 m

spacing over a distance of 240 m). However, reproduction of plume shapes requires a lot less boreholes (in this case study five

boreholes with 60 m spacing over a distance of 240 m).
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1. Introduction

Groundwater contamination became an important

environmental issue which poses a serious threat to

drinking water quality. The simulation of contaminant

transport through the subsurface is necessary in order

to effectively design mitigation methods for cleanup

and prevention of the deterioration of the subsurface-

water. It is well known that natural heterogeneity and

the large scale spatial variability of the hydraulic

conductivity controls the flow field and hence the

spreading of contaminant plumes in the subsurface

(see e.g. the Borden landfill in Ont., Canada (Sudicky,

1986), the MADE site at Columbus Air Force Base in

Mississippi (Boggs et al., 1992), and Cape Cod, MA,

USA (Hess et al., 1992).

Our inability to characterize subsurface heterogen-

eity properly makes predictions of contaminant

concentration highly uncertain. All theories reviewed

by Dagan (1989) and Gelhar (1993) describe plumes

by means of a few global measures such as the

centroid (first moment) of the plume and the spreading

around that centroid (second moment). Most of these

theories rely on assumptions of global stationarity of

the heterogeneous medium and log–normal distri-

bution of the hydraulic conductivity. They are derived

in the context of continuum mechanics leading to

upscaled transport parameters (e.g. macro-dispersion

tensor). However, in subsurface geological formations

discrete geometrical structures exist (see e.g. some

outcrops, among many others, in the Oude Maas

deposit, The Netherlands; Ref. Van Beek and Koster,

1972, and Weber et al., 1972; a palaeo Rhine

distributary in the Netherlands). These discrete

features render simple concepts of continuum mech-

anics invalid at field scale. The use of scale averaging

on transport of contaminants can lead to unreliable

prediction of contaminant spreading (e.g. the exist-

ence of high conductivity preferential flow paths and

low conductivity barriers are smeared out resulting in

non-physical model parameters and predicted plumes

that are smoother than observed ones). Therefore,

application of the existing theories (based on

Guassian random fields) in a highly complex

geological setting with discrete features and the

existence of preferential flow paths is still

questionable.
Maps of heterogeneity must represent features that

are consequential to flow and transport processes to

minimize the uncertainty of flow and concentration

fields. Many studies focused on minimizing concen-

tration uncertainty by conditioning the hydraulic

conductivity fields either on measurements of

hydraulic conductivity (e.g. using Kriging techniques

or Gaussian conditional probability distributions) in

solving the forward (direct) groundwater flow and

transport problems (e.g. recent work by van Leeuwen

(2000)), or by conditioning on groundwater head data

and/or concentration data (see e.g. recent work by

Valstar (2001) and Bakr et al. (2003) using the method

of representer) in solving the inverse groundwater

flow and transport problems. The forward modeling

approach has the advantage of being well-posed and

efficient in terms of computer costs. Elfeki et al.

(1998) performed Monte-Carlo numerical simulations

in a forward framework to study flow and transport

using unconditional coupled Markov chain model for

quantification of uncertainty in concentration distri-

butions. They distinguished three different types of

uncertainties: geological uncertainty in which the

geological configuration of the units is uncertain and

characterized by transition probabilities, while the

conductivity value in each unit is assumed uniform

and known in a deterministic sense. Parametric

uncertainty assumes that the geological structure is

known deterministically while the parameter value at

each unit is subjected to uncertainty characterized by

a stationary Gaussian field. This is a plausible

geological assumption for some sites, like some

outcrops), and both parametric and geological

uncertainties where both the geological structure and

parameter values are uncertain. The last one is the

worst case scenario where information is lacking on

both the geological structures and the parameter

values of each unit. One of their conclusions

emphasized the early work by Smith and Schwartz

(1981) where the uncertainty can be strongly reduced

when deterministic information is available about the

geological structure (e.g. interfaces between geologi-

cal units).

In this study, the concept of geological uncertainty

is adopted. This means that the geological structure is

considered uncertain, it is only known through the

transition probabilities. However, the K value of each

unit is known in a deterministic sense. So, each
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generated realization, by the CMC model, in the

Monte-Carlo framework produces a realization of the

configuration of the geological structure, while

the parameter value of each structure is supposed to

be known deterministically. This assumption can be

justified from the practical point of view where

measurements are often lacking about the subsurface

parameters. Engineers often use data about hydro-

logical parameters from the literature. However,

geological boreholes may provide some data to

delineate the geological configuration while in

between the boreholes the geological configuration,

continuity and discontinuity of the layers are

uncertain. Therefore, the conditioning is formulated

in a forward modeling framework. However, instead

of conditioning on measurements of hydraulic

conductivity, the conditioning is performed on the

geological structures predicted from borehole data.

This research presents a Monte-Carlo framework for

coupling the stochastic technique called ‘coupled

Markov chain’ (Elfeki and Dekking, 2001) with

numerical groundwater and transport models to

predict concentration distribution of contaminant

plumes in the subsurface layers with the associated

uncertainty in concentration distribution. The goal of

this study is to address some aspects that are not given

much attention in the literature,

1. using the so-called CMC (Coupled Markov Chain)

model for modeling heterogeneity as a non-

Gaussian (and non-stationary) field characterized

by multi-dimensional transition probabilities rather

than variograms or autocorrelation functions,

2. considering the hydrodynamic flow field that is

non-uniform in the mean due to boundary

conditions where flow is driven from the left top

corner moving towards the right domain boundary.

Many researches consider a flow field that it is

driven from left to right. However, in this study we

considered flow, which is non-uniform in the mean

at the macroscopic level to simulate seepage form

landfill, to deviate from the literature and to explore

other hydrodynamic conditions. However, the

boundary conditions are fixed head boundaries

and assumed certain, and

3. utilizing the concept of forward modeling in the

framework of conditioning on geological boreholes

information (geometrical configuration) rather
than conditioning on direct measurements of the

hydrogeological parameters (e.g. hydraulic con-

ductivity, porosity, etc.).

The above mentioned issues have been investi-

gated through the application of the CMC model, flow

and transport models on an unconsolidated deposit

located in the central Rhine-Meuse delta (the Gorkum

study area Fig. 1) in the Netherlands.
2. Cross-section data

The Gorkum study area is located in the central

Rhine-Meuse delta in the Netherlands. Fig. 1 shows the

geological cross-section, interpreted by geologists

based on drillings made at 20 m apart (for details see

Weerts and Bierkens, 1993; Bierkens and Weerts,

1994; and Weerts, 1996). Six lithogenetic units are

distinguished; channel deposits (sand), natural levee

deposits (fine sand, sandy clay, silty clay), crevasse

deposits (fine sand, sandy clay, silty clay), flood basin

deposits (clay, humic clay), peat and the subsoil that

consists of sandy eolian and fluvial sediments. The data

at the site is merely used to calculate the transition

probabilities used in the CMC model to generate a

reference geological model for the rest of the analysis.
3. Description of the coupled Markov chain model

The coupled Markov chain (CMC) model (Elfeki

and Dekking, 2001) is applied on the cross-section

given in Fig. 1. A brief description of the coupled

Markov chain model is given below. The model is

stochastic in nature, and couples two Markov chains.

The first one is used to describe the sequence of

lithologies in the vertical direction, and the second in

the horizontal direction. The two chains are coupled in

the sense that a state of a cell (i, j) in the domain

depends on the state of two cells, the one on top: (i,

jK1), and the other on the left: (iK1, j) of the current

cell (Fig. 2 top). The model is very general, it can

handle any three cells from various directions. We can

even have four possibilities namely top and left (as in

this case), bottom and left, right and bottom, and right

and top. This type of modeling approach is called

unilateral Markov random fields (see e.g. Galbraith



Fig. 1. Map location of the study area and cross-section showing the deposits of the Holecene fluvial systems, Weerts and Bierkens (1993): Top

images show the map of the Netherlands and the site location. The bottom image shows the overall cross-section drawn from the boreholes, the

window on the image is the part used for transport simulations. Note the vertical exaggeration.
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and Walley, 1976). The reason behind this choice is

twofold: first is to develop an efficient generation

algorithm of Markovian fields. Traditional Markov

random fields (Cross and Jain, 1983) use dependence

of four neighboring cells that leads to implicit

formulation of the generation algorithm. This pro-

cedure becomes inefficient in terms of computer time

and does not produce satisfactory results from the

geological point of view (see Cross and Jain, 1983).

Second is that in field situations, data are usually in

the form of boreholes (vertical variability) and surface

knowledge (horizontal variability) is gained from
the geological survey. The technique tries to

propagate the knowledge available on the left vertical

and top horizontal boundaries through the horizontal

and vertical chains, respectively, into the cells inside

the domain. The dependence of the cells is described

in terms of transition probabilities from the two chains

as

plm;k :Z PrðZi;j Z SkjZiK1;j Z Sl; Zi;jK1 Z SmÞ

Z
ph

lkpv
mkP

f ph
lf pv

mf

k Z 1;.; n (1)



Unconditional Coupled Markov Chain on the Right Boundary.

Conditional Coupled Markov Chain on the Right Boundary.
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Fig. 2. Numbering system in a two-dimensional domain for the

coupled Markov chain model. Unconditional coupled Markov chain

(top), and the coupled Markov chain conditioned on future states

(bottom). Dark grey cells are known boundary cells, light grey cells

are known cells inside the domain (previously generated, the past)

white cells are unknown cells. The future state used to determine the

state of cell (i, j) is the state on the same level at cell (Nx, j) (from

Elfeki and Dekking, 2001).
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where plm, k is the probability that cell (i, j) is in state

Sk given that cell (iK1, j) is in state Sl and cell (i, jK1)

is in state Sm, Zi, j is the state of cell (i, j), ZiK1, j is

the state of cell (iK1, j), Zi, jK1 is the state of cell

(iK1, j), ph
lk and pv

mk are the corresponding elements of

the horizontal (superscript h) and vertical (superscript

v) transition probability matrices and n is the number

of states in the geological system.

An extension of the coupled Markov chain model

to enable conditioning on any number of boreholes is

achieved in Elfeki and Dekking (2001). The method-

ology is based on the concept of conditioning a one-

dimensional horizontal Markov chain on future states

(Fig. 2 bottom). The conditioning is performed in an

explicit way. This makes the methodology efficient in

terms of computer time and storage in comparison

with other techniques available in the literature (e.g.

simulated annealing see Parks et al., 2000). The

conditioning formula is given by,

plm;kjq :Z PrðZi;j Z SkjZiK1;j Z Sl; Zi;jK1

Z Sm;ZNx;j
Z SqÞ

Z
ph

lkp
hðNxKiÞ
kq pv

mkP
f ph

lf p
hðNxKiÞ
fq pv

mf

; k Z 1;.; n (2)
where plm, kjq is the probability that cell (i, j) is in state

Sk given that cell (iK1, j) is in state Sl and cell (i, jK1)

is in state Sm and cell (Nx, j) is in state Sq, and p
hðNxKiÞ
kq

is the probability to go from Sk to Sq in (NxKi)-steps.

The transition probabilities are obtained by super-

imposing a grid with equidistant cells (DxZ2 m,

DyZ0.25 m) in both vertical and horizontal directions

over the geological map (Fig. 1 the window part).

Choosing cell dimensions correspond to some rule of

thumb (Lin and Harbaugh, 1984): the minimum sizes

of the geological features observed in the cross-

section. Smaller cell sizes would lead to higher

resolution while more computational efforts are

needed. Larger cell sizes would lead to less

computational efforts while simmering out some

geological features (Lin and Harbaugh, 1984). The

transition frequencies (e.g. in the vertical direction)

are calculated between the states by counting how

many times a given state Sl is followed by itself or by

other state Sk in the vertical direction, and then it is

divided by the total number of transitions in the

vertical direction (Elfeki and Dekking, 2001). Similar

procedure is made for the horizontal direction. Table 1

shows the computed statistics from Fig. 1 (the window

part).
4. Sensitivity analysis of the model parameters

Bierkens (1996) has performed both laboratory

tests and utilization of empirical equations to

estimate the hydraulic and geometrical parameters

of the samples collected from the site. Some of

these parameters are given in Table 2. In the present

study, we considered constant porosity, which is set

to a value of 0.3. Bierkens (1996)) showed,

however, that the porosity values in the Fig. 1

cross-section are not constant. Since, our main

interest is to investigate the effect of conditioning

on the geometric configuration and consequently on

the solute plumes, whatever the model parameters

are, we fell that the simplification of a constant

porosity is justifiable. For the purpose of transport

simulations there was no data available regarding

dispersivities. Therefore, the dispersivity is also

considered constant, and is set to 0.1 m in the

longitudinal direction and to 0.01 m in the vertical

one (Fig. 3).



Table 2

Soil properties at core scale of the 240 m!10 m cross-section (Bierkens, 1996)

Code (i) Soil type Wi hYii s2
Yi

hKii m/day s2
Ki

3 Sand and silty clay 0.19 K4.97 3.49 0.1 5.86

4 Clay and humic clay 0.30 K7.00 2.49 0.01 10.1

5 Peat 0.39 K2.00 1.7 0.30 2.99

6 Fine and loamy sand 0.12 0.60 1.76 4.40 0.09

Wi, hKii, s2
Ki

, hYii, s2
Yi

are the proportion in the cross-section, mean and variance of conductivity, logarithmic transformation of mean and

variance of conductivity of lithology (i), respectively.

Table 1

Horizontal and vertical transition probability matrices of the 240 m section (modified from Keshta, 2003)

Length of the given sectionZ240 m Depth of the given sectionZ10 m

Sampling interval in X-directionZ2 m Sampling interval in Y-directionZ0.25 m

No. of statesZ4

Horizontal transition probability matrix Vertical transition probability matrix

State 3 4 5 6 State 3 4 5 6

3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000

4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000

5 0.008 0.012 0.977 0.003 5 0.025 0.139 0.791 0.045

6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000
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Trial numerical experiments have been per-

formed to study the accuracy of the flow model

under the given hydraulic conductivity contrast.

The criterion for convergence in the solution of

the flow problem is that the sum of residuals

should be small enough. Three accuracy limits are

tested namely 0.001, 0.0001 and 0.00001. It has

been shown that an accuracy limit of 0.0001 is

reasonable in terms of stable results and compu-

tational costs (Keshta, 2003).

For stability of the Monte-Carlo realizations, 50

and 100 realizations are tested to study the

convergence of the computations. Table 3 shows
Contaminant Source

Plume at Tim

Impermeable b

Fig. 3. Schematic representation of the flow
the flow and transport parameters used in the

numerical experiments. In the Monte-Carlo runs,

the mean concentration fields are constructed by

averaging the solute concentrations over the total

number of realizations. Ensemble average concen-

trations hC(x, t)i can be determined at each grid

point as

hCðx; tÞi Z
1

MC

XMC

kZ1

Ckðx; tÞ; (3)

Ck(x, t) is the concentration at a given t, and

location x in the kth realization.
e  t 

oundary

Impermeable boundary

and transport problems in this study.



Table 3

Numerical simulation values used in the numerical tracer

experiment

Parameter Numerical value

Domain dimensions LxZ240 m, LyZ10 m

Domain discretization DxZ2 m, DyZ0.25 m

Average head difference over the

domain

1.0 m

Injected tracer mass 1000 g

Number of particles 10,000 Particles

Time step in calculations 5 days

Longitudinal pore-scale dispersivity 0.10 m

Transverse pore-scale dispersivity 0.01 m

Effective porosity 0.30

X- and Y-coordinates of injection source 15 m, K2.0 m

Initial source dimensions WidthZ20.0 m and

DepthZ1.0 m

Retardation coefficient 1.0

Diffusion coefficient 0.0
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Fig. 4. Sensitivity analysis on the number of Monte-Carlo

realizations.

Table 4

Different conditioning scenarios considered in the study

Conditioning

scenario #

No. of boreholes Distance between

boreholes (m)

1 2 240

2 3 120

3 5 60

4 9 30

5 13 20

6 17 15

7 25 10
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This ensemble average hC(x, t)i can be inter-

preted as the imaginary envelope of

the performance determined by all possible realiz-

ations (Fischer et al., 1979). For a real field

situation, however, there is always a single (actual)

realization. Therefore, one could expect to find the

actual plume within the imaginary envelope given

by the expected value of the concentration field.

The concentration variance at each grid point is

given by

s2
Cðx; tÞ Z

1

MC

XMC

kZ1

½Ckðx; tÞK hCðx; tÞi�2 (4)

s2
Cðx; tÞ represents the uncertainty in the

predictions.

Fig. 4 shows the effect of the number of Monte-

Carlo realizations on the stability of the ensemble and

the standard deviation of the peak concentration.

Fig. 4 leads to the conclusion that increasing the

number of Monte-Carlo realizations from 50 to 100

realizations, in this particular problem, does not

significantly affect the accuracy of the ensemble

concentration and its standard deviation. The reason

behind this is that conditioning on boreholes controls

the geological structures so that they do not vary that

much from one realization to another and leads to fast

converges of the ensemble statistics. This is of course

different from other Monte-Carlo methods that use
stationary Gaussian random fields which need many

realizations to converge (see Guadagnini and Neu-

man, 1999).

A set of numerical experiments is performed

according the conditioning scenarios given in

Table 4. The conditioning is performed on sample

data from the reference cross-section that is generated

based on real data from the central Rhine-Meuse delta

in the Netherlands. Single realizations of plume

concentration, spatial moments and breakthrough

curves are obtained and ensemble plume concen-

tration and standard deviation plume concentration

are computed for various conditioning scenarios at

different times.
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5. Discussion of flow and transport simulation

results
5.1. Single realizations analysis
5.1.1. Concentration fields

Plume snapshots at 41.1 and 82.2 years since

release, and conditioned on 2, 3, 5, 9, 13, 17 and 25
Fig. 5. Performance of conditioning with increasing the number of boreho

respectively). Top image (left column) is the schematized original cross

simulations of the geological structures (single realizations). Single realizat

the given boreholes (middle column). Single realizations of the concentrat

(right column), (concentration is in mg/l).
boreholes are displayed in Fig. 5. It is important to

mention that the actual drilling density in this section

was 13 drillings at an equidistance of 20 m (Weerts

and Bierkens, 1993). The high nugget value in their

variograms suggests that the lithological variation in

the section is actually larger than that is suggested by

the ‘ground truth’. We have investigated here many

imaginary boreholes to study the convergence of the
les (from top to bottom: 2, 3, 5, 9, 13, 17 and 25 boreholes are used,

-section and all the next rows show the corresponding stochastic

ions of the concentration distribution at tZ41.1 years conditioned on

ion distribution at tZ82.2 years conditioned on the given boreholes
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concentrations and plume statistics to concentration

and plume statistics of the original section. Fig. 5

shows the enhancement of the shape of the concen-

tration plume and the values of the concentration

distribution with increasing number of conditioning

boreholes. Conditioning on two boreholes is the worst

case scenario. There is a pronounced improvement in

the plume shape when conditioning is performed on

three boreholes. Conditioning on five boreholes shows

improvement in the plume front, which was lost when

conditioning is performed on three boreholes.

Increasing the number of boreholes from five onwards

does not show significant improvement in the plume

shape, however, the magnitude of the concentration

seems to improve a lot. This is noticeable at the black

zones with concentration larger than 10 mg/l (see

Fig. 5 middle and right columns).

5.1.2. Peak concentration

Models are often used to predict peak concen-

trations. It is of practical interest to compare the

maximum actual concentration at a given time (from

the original section) with the maximum concentration

computed from single realizations conditioned on

number of boreholes. Fig. 6 displays the performance

of the peak concentration at four different times (34.2,

68.4, 95.8 and 136.9 years) as a function of
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Fig. 6. Performance of conditioning on peak concentration (single

realizations) at a number of snapshots tZ34.2, 68.4, 95.8, and 136.9

years, respectively.
the number of conditioning boreholes. The curves

show general trend towards the convergence of the

peak concentration of the original section. The

convergence is of oscillatory type this is due to

the fact that some layers will become connected in one

of the conditioning scenarios which leads to prefer-

ential flow within high permeable connective layers

and high concentration (convective dominant flow).

Whereas, in another conditioning scenario the layers

may be disconnected with low permeable zones which

would lead to flow barriers and low concentration

(dispersive dominant flow). It is important to notice

that the location of the peak concentration may

change from one location to another due to the

conditioning scenario. Conditioning on 21 boreholes

could be satisfactory from a practical point of view at

all times.

5.1.3. Plume spatial moments

Fig. 7 shows single realizations of plume spatial

moments (first and second moments) in the x- and

y-directions, respectively. The simulations show that

conditioning on three boreholes is the minimum

requirement to produce the same trend as observed in

the original section. However, conditioning on 5 up to

25 boreholes shows enhancement of the convergence

towards the original section in terms of the magni-

tudes of the spatial moments.

5.1.4. Breakthrough curve

Fig. 8 shows the performance of the breakthrough

curves due to conditioning on 2, 3, 5, 9 and 25

boreholes, respectively. It is important to mention

that, the breakthrough curves are calculated for the

normalized mass of the concentration in the modeled

cross-section. The curves show enhancement due to

conditioning.

5.1.5. Effect of borehole locations

A series of experiments has been performed to

study the effect of an intermediate borehole location

on the conditioning performance. In these exper-

iments, we fixed the left boundary and right boundary

boreholes. However, a single middle borehole was

located at various locations at 30, 60, 90, 120, 150,

180, 210 m from the left boundary, respectively. The

corresponding conditional geological simulation on

these boreholes is shown in Fig. 9 (left column).
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Fig. 7. Performance of conditioning on first and second plume spatial moments in x- and y-directions, respectively, of single realizations of the

240 m!10 m cross-section shown in Fig. 1 when conditioned on 2, 3, 5, 9, 13, 17 and 25 boreholes, respectively, (top left image is the evolution

of the X-coordinate of the centroid, top right image is the evolution of the Y-coordinate of the centroid, bottom left image is the evolution of the

variance in X-coordinate and bottom right image is the evolution of the variance in Y-coordinate.
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The flow and transport models are run on these

geological realizations and displayed on the middle

and right columns of Fig. 9 after 41.1 and 82.2 years

since release. The simulations show the importance of
a borehole location on capturing the actual shape of

the plume. In the near field about 41.1 years since

release, the best plume shape is obtained when the

borehole is located at 30 m. However, in the far field
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i.e. about 82.2 years since release, the best plume

shape is obtained when conditioning is performed on a

borehole located at 120 m. This leads to the

conclusion that conditioning is dependent on the

size of the plume. At early times, when the plume is

small, conditioning on a 30 m borehole was sufficient

to capture the significant heterogeneity that is in the

order of magnitude of the plume size. It produces a

plausible plume shape. In late times, the plume

spreads on a larger area and the 30 m borehole is

not anymore significant. However, the 120 m bore-

hole captured the larger scale variability of the deposit

leading to better representation of the plume.

5.2. Analysis of ensemble computational results

5.2.1. Ensemble concentration fields and standard

deviations

Figs. 10–12 and 13 show a comparison between the

evolution of actual plumes (simulated in the original

cross-section) and ensemble plumes at some snap-

shots recorded at time tZ4.1, 82.2, and 136.9 years,

respectively. The reduction of uncertainty due to

conditioning is computed as the difference between

conditioning on a number of boreholes to condition-

ing on two boreholes only (minimum conditioning

scenario). This difference is plotted for conditioning

on 5 (Fig. 11), 9 (Fig. 12) and 25 (Fig. 13) boreholes,

respectively. However, for conditioning on two
boreholes the standard deviation in concentration

fields are plotted as a reference. It is noticeable that

the ensemble plumes are smoother in appearance in

comparison with the corresponding actual plumes.

This is due to the averaging procedure over the

number of Monte-Carlo realizations. Conditioning

enhances the prediction of the concentration distri-

bution. It is clear from the figures that ensemble

plumes converge to the actual plume shape by

increasing the number of conditioning boreholes up

to 25 boreholes. The ensemble average and ensemble

standard deviation plumes (middle and right columns

in Fig. 10) possess the same shape and they are

covering a large area with respect to the actual

plumes. Figs. 11–13 shows the reduced uncertainty

due to conditioning. At early time there is almost no

improvement, however, at large times the reduction in

uncertainty is remarkable. The negative values mean

reduction in the uncertainty, zero values mean no

reduction in uncertainty and positive values means

places with high uncertainty. It is noticeable that the

highest plume uncertainty (black zones) is located in

the plume fronts in the direction of the flow field and it

is reduced once the front is getting diffused.

5.2.2. Ensemble peak concentration and coefficient of

variation

Fig. 14 (left) shows the ensemble average peak

concentration as a function of the conditioning

boreholes at four snapshots. The graphs show the

convergence of the ensemble average peak concen-

tration towards the actual concentration (in the

original section). It is obvious from the graph that

even with 31 conditioning boreholes, the ensemble

peak concentration is below the actual concentration

in the original section. This has to do with averaging

over the realizations that always lead to smoother

concentration than in the actual section (see single

realizations in Fig. 6).

Fig. 14 (right) shows the coefficient of variation of

maximum concentration CV(Cmax) at some snapshots

as a function of the conditioning boreholes. The CV is

relatively large (CVO1) when conditioning is

performed on two, three and four boreholes. This

reflects high uncertainty in the peak concentration.

However, a big reduction in the CV has been achieved

by conditioning on five boreholes onwards. It is also

clear from the figure that CV(Cmax) increases in time
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Fig. 9. Effect of borehole location. Performance of conditioning on three boreholes; two at the boundaries and a middle borehole at 30, 60, 90,

120, 150, 180, 210 m, respectively. Top most image (left column) is the schematized original cross-section and all the next rows show the

corresponding stochastic simulations of the geological structures (single realizations). Single realizations of the concentration distribution at tZ
41.1 years conditioned on the given boreholes (middle column). Single realizations of the concentration distribution at tZ82.2 years

conditioned on the given boreholes (right column), (concentration is in mg/l).
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after conditioning on 12 boreholes onwards and it

does not significantly change when number of

boreholes increases. The increase of CV(Cmax) in

time is due to the fact that the source is located in
a low permeable zone which does not change over the

realization due to conditioning and the flow is

perpendicular to the layers (in the near field). This

leads to plumes which do not change much in their



Fig. 10. Performance of conditioning on two boreholes: Top left is the ‘real’ cross-section. Next rows left column show the concentration fields

of the actual cross-section at tZ4.1, 82.2, and 136.9 years and from top to bottom). Middle column top image is the conditioning boreholes.

Next rows middle column is the ensemble concentration field at the same times. Right column shows the ensemble standard deviation

concentration fields at the same times.

Fig. 11. Performance of conditioning on five boreholes: Top left is the ‘real’ cross-section. Next rows left column shows the concentration fields

of the actual cross-section at tZ4.1, 82.2, and 136.9 years and from top to bottom). Middle column top image shows the conditioning boreholes.

Next rows middle column is the ensemble concentration field at the same times. Right column is the difference between ensemble standard

deviation concentration fields conditioned on 25 boreholes and ensemble standard deviation concentration fields conditioned on two boreholes

at the same times.
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Fig. 12. Performance of conditioning on nine boreholes: Top left is the ‘real’ cross-section. Next rows left column is the concentration fields of

the actual cross-section at tZ4.1, 82.2, and 136.9 years and from top to bottom). Middle column top image is the conditioning boreholes. Next

rows middle column is the ensemble concentration field at the same times. Right column is the difference between ensemble standard deviation

concentration fields conditioned on nine boreholes and ensemble standard deviation concentration fields conditioned on two boreholes at the

same times.

Fig. 13. Performance of conditioning on 25 boreholes: Top left is the ‘real’ cross-section. Next rows left column is the concentration fields of the

actual cross-section at tZ4.1, 82.2, and 136.9 years and from top to bottom). Middle column top image is the conditioning boreholes. Next rows

middle column is the ensemble concentration fields at the same times. Right column is the difference between ensemble standard deviation

concentration fields conditioned on 25 boreholes and ensemble standard deviation concentration fields conditioned on two boreholes at the same

times.
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shapes over the realizations resulting in low coeffi-

cient of variation, however, when the plume gets far

from the injection zone where the flow becomes

nearly horizontal (i.e. in the far field) it spreads over

larger area resulting in an increase of CV(Cmax).
6. Conclusions

The following conclusions can be drawn,

1. The coupled Markov chain model proved to be a

valuable tool in predicting the configuration of the

heterogeneous geological structures which leads

to reducing uncertainty in concentration distri-

butions of contaminant plumes when reasonable

amount of data is available.

2. In the current study, conditioning on 31 boreholes

(spacing 8 m apart over a distance of 240 m) leads

to the conclusion that a single realization plume

is equivalent to its ensemble averaged plume.
This means conditioning on a sufficient number of

boreholes would lead to fulfilling ergodic con-

ditions.

3. The ensemble concentration distribution and the

ensemble standard deviation distribution have the

same pattern. The ensemble concentration stan-

dard deviation is peaked at the location of the peak

ensemble concentration and decreases when one

goes far from the peak concentration. This result

supports early work by Rubin (1991). However, in

Rubin’s case the maximum concentration was

in the center of the plume which is attributed

to Gaussian fields. The non-centered peak con-

centration, in this study, is attributed to the non-

Gaussian multi-modal conductivity fields and the

high contrast in hydraulic properties.

4. Reproduction of peak concentration, breakthrough

curves, and the magnitude of plume spatial

moments in a single realization require many

conditioning boreholes (between 20 and 31
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boreholes with 10–8 m spacing over a distance of

240 m in this case study, whereas the actual

number of boreholes was 13). However, reproduc-

tion of plume shapes requires less boreholes (five

suffice with 60 m spacing).

5. For single realization approach, convergence to

the actual concentration is of oscillatory type. The

reason behind this is that some layers are

connected in one conditioning scenario which

leads to preferential flows (advection dominant

regime with high concentrations), while it may get

disconnected in another conditioning scenario

leading to flow barriers (dispersive dominant

regime with low concentrations).
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