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Predominantly occurring on cytosine, DNA methylation is a process by which cells can modify their DNAs
to change the expression of gene products. It plays very important roles in life development but also in
forming nearly all types of cancer. Therefore, knowledge of DNA methylation sites is significant for both
basic research and drug development. Given an uncharacterized DNA sequence containing many cytosine
residues, which one can be methylated and which one cannot? With the avalanche of DNA sequences
generated during the postgenomic age, it is highly desired to develop computational methods for accu-
rately identifying the methylation sites in DNA. Using the trinucleotide composition, pseudo amino acid
components, and a dataset-optimizing technique, we have developed a new predictor called ‘‘iDNA-
Methyl’’ that has achieved remarkably higher success rates in identifying the DNA methylation sites than
the existing predictors. A user-friendly web-server for the new predictor has been established at http://
www.jci-bioinfo.cn/iDNA-Methyl, where users can easily get their desired results. We anticipate that the
web-server predictor will become a very useful high-throughput tool for basic research and drug devel-
opment and that the novel approach and technique can also be used to investigate many other DNA-re-
lated problems and genome analysis.

� 2014 Elsevier Inc. All rights reserved.
Being a biochemical process where a methyl group is added to
the cytosine residue, DNA methylation is involved in the regulation
of many genes, plays an important role for epigenetic gene regula-
tion in both life development and disease formation, and hence is
considered a major epigenetic mark responsible for silencing of cell
fate regulators [1]. In mammals, DNA methylation helps to regulate
gene expression, genome imprinting, and X-chromosome inactiva-
tion [2].

Predominantly occurring on cytosine within a CG dinucleotide,
DNA methylation is a covalent modification of DNA catalyzed by
DNA methyltransferase (DNMT)1 enzyme (Fig. 1). The DNA methy-
lation sites are occupied by various proteins, including methyl-CpG
binding domain (MBD) proteins that recruit a variety of histone
deacetylase (HDAC) complexes and chromatin remodeling factors,
leading to chromatin compaction and, consequently, to transcrip-
tional repression. By either impeding the binding of transcriptional
proteins to the gene [3] or bonding to the MBD [4], DNA methylation
may affect the transcription of genes.

DNA methylation has long been suspected to play a role in
tumorigenesis and cancer progression in various tissue types [5].
Actually, it plays a crucial role in developing nearly all types of can-
cer [6]. It is also important in stratifying patients for disease sub-
classification and personalized medicine, particularly in identifying
biomarkers for improved therapeutic individualization [7]. There-
fore, knowledge of DNA methylation sites is vitally important for
both basic biomedicine research and practical drug development.

Cokus and coworkers [8] reported that there are some special
sequence patterns for DNA methylation in the Arabidopsis genome.
Using deep sequencing analysis, Kim and coworkers [9] revealed
that there exist distinct patterns of DNA methylation in prostate
cancer, indicating that the sites of DNA methylation are correlated
with their sequential environments. In view of these findings, it is
not only possible but also important to identify the methylation
sites based on the sequence information alone. In particular, with
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Fig.1. A schematic drawing showing the process of DNA methylation. Catalyzed by
DNA methyltransferase (DNMT), a methylation group is binding to the base
cytosine (C) via a covalent bond.
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the avalanche of DNA sequences generated during the postge-
nomic age, it is highly desired to develop computational methods
for rapidly and effectively identifying the sites of DNA methylation.

In fact, during the past decade or so, some efforts have been
made to use the computational approach to identify the DNA
methylation sites. For instance, based on the support vector
machine (SVM), Bhasin and coworkers [10] proposed a method
called ‘‘Methylator’’ to predict the methylated CpGs in DNA
sequences. Subsequently, Fang and coworkers [11] developed a
method called ‘‘MethCGI’’ for predicting the methylation status of
CpG islands in the human brain.

Although the aforementioned two predictors [10,11] did play an
important role in stimulating the development of this area, they
have the following shortcomings or limitations. First, in construct-
ing the benchmark datasets for training and testing them, no clear
cutoff procedure was imposed to remove the redundancy samples;
accordingly, the two predictors could not avoid homology bias, and
hence the success rates reported in Refs. [10,11] might be overes-
timated. Second, no sequence order information or effects were
taken into account, and hence their prediction power might be lim-
ited. Third, no web-server whatsoever has been established for
either the predictor Methylator [10] or the predictor MethCGI
[11], which has significantly reduced the practical application val-
ue; particularly for most experimental scientists working in the
fields of biomedicine and drug development, the impact of user-
friendly web-servers is remarkable [12].

The current study was driven by the motivation to develop a
new predictor in this regard by addressing the three drawbacks
mentioned above.

Materials and methods

As shown by a series of recent publications [13–22] in response
to the call from a comprehensive review [23] to develop and pre-
sent a really useful statistical predictor for a biological system,
one should make the following procedures crystal clear: (i) how
to construct or select a valid benchmark dataset to train and test
the predictor, (ii) how to formulate the statistical samples with
an effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted, (iii) how to
introduce or develop a powerful algorithm (or engine) to operate
the prediction, (iv) how to properly perform the cross-validation
tests to objectively evaluate the anticipated accuracy of the predic-
tor, and (v) how to establish a user-friendly web-server for the pre-
dictor that is accessible to the public. Below, we address these five
procedures one by one.

Benchmark datasets

For facilitating description later, we use the following scheme to
represent a DNA sample:

DnðCÞ ¼ N�nN�ðn�1Þ � � �N�2N�1CNþ1Nþ2 � � �Nþðn�1ÞNþn ð1Þ

where the center ðCÞ represents cytosine, the subscript n is an inte-
ger, N�n represents the n-th upstream nucleotide from the center, Nn

represents the n-th downstream nucleotide, and so forth (Fig. 2).
The ð2nþ 1Þ-tuple DNA sample DnðCÞ can be further classified into
the following categories:

DnðCÞ 2
Dþn ðCÞ; if its center is a methylation site
D�n ðCÞ; otherwise

(
ð2Þ

where Dþn ðCÞ represents a true methylation segment, D�n ðCÞ repre-
sents a false methylation segment, and 2 represents ‘‘a member
of’’ in the set theory.

As pointed out by a comprehensive review [24], there is no need
to separate a benchmark dataset into a training dataset and a test-
ing dataset if the predictor to be developed will be tested by the
jackknife test or subsampling (K-fold) cross-validation test. Thus,
the benchmark dataset for the current study can be formulated as:

Sn ¼ S
þ
n [ S

�
n ; ð3Þ

where Sþn contains only the samples of Dþn ðCÞ (i.e., the methylation
DNA segments), S

�
n contains only the samples of D�n ðCÞ (i.e., the

non-methylation DNA segments; cf. Eq. (2)), and [ represents the
symbol for union in the set theory.

Because the length of the peptide DnðCÞ is 2nþ 1 (cf. Eq. (1)), the
benchmark dataset with different values of n will contain DNA seg-
ments of different numbers of nucleotides, as formulated by:

Sn contains the segments of

37 nucleotides; when n ¼ 18
39 nucleotides; when n ¼ 19
41 nucleotides; when n ¼ 20
43 nucleotides; when n ¼ 21

..

. ..
.

8>>>>>>><
>>>>>>>:

ð4Þ

The detailed procedures to construct Sn are as follows. First,
sliding a window of ð2nþ 1Þ nucleotides (Fig. 2) along each of
the DNA sequences taken from MethDB [25] (http://www.
methdb.de), a public database for DNA methylation, only those
DNA segments with C (cytosine) at the center (i.e., the potential
methylation site-containing segments) were collected. Second, if
the upstream or downstream in a DNA was less than n, the lacking
nucleotide was filled with the same nucleotide of its closest
neighbor. Third, the DNA segment samples obtained in this way
were put into the positive subset S

þ
n if their centers had been

experimentally annotated as the methylation sites; otherwise, they
were put into the negative subset S

�
n . Fourth, using CD-HIT soft-

ware [26], the aforementioned samples were further subject to a
screening procedure to winnow those that were identical to any
other in a same subset. Fifth, excluded from the benchmark dataset
were also those that were self-conflict, namely occurring in both
methylation subset Sþn and non-methylation subset S�n .

http://www.methdb.de
http://www.methdb.de


Fig.2. An illustration showing the flexible window ½�n;þn� sliding along a DNA sequence. Adapted from Chou [77] with permission. See the text for further explanation.
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By following the aforementioned five steps and using
n ¼ 18;19;20; and 21 for the width of the sliding window, we
obtained four benchmark datasets: Sn¼18;Sn¼19;Sn¼20, and Sn¼21,
respectively. However, it was observed via preliminary trials that
when n ¼ 20 (i.e., the DNA segments concerned were formed with
20� 2þ 1 ¼ 41 nucleotides (cf. Eq. (4)), the corresponding results
were most promising. Accordingly, we choose Sn¼20 as the bench-
mark dataset for further investigation. Thus, Eq. (3) can be here-
after expressed as:

Sð2426Þ ¼ S
þð787Þ [ S

�ð1639Þ ð5Þ

where S ¼ S20 ¼ Sð2426Þ, which contains 2426 DNA segments, of
which 787 samples are of methylation belonging to the positive
dataset Sþ ¼ Sþ20 ¼ Sð787Þ, whereas 1639 are of non-methylation
belonging to the negative dataset S� ¼ S�20 ¼ Sð1639Þ. The detailed
sequences of the 787 + 1639 = 2426 DNA segments and their posi-
tions in the original DNA sequences are given in Supporting Infor-
mation S1 of the online supplementary material.

Representation of DNA segment samples

The DNA samples in the current benchmark dataset can be gen-
erally expressed as:

D ¼ N1N2N3 � � �Ni � � �N41; ð6Þ

where Ni represents the nucleotide at the sequence position i
ð1;2; � � � ;41Þ. Based on the sequential model of Eq. (6), one could
directly use BLAST [27] to perform statistical analysis. Although
quite straightforward and simple, this kind of intuitive approach
failed to work when a query sequence sample did not have sig-
nificant similarity to any of the character-known sequences.

To cope with this problem, investigators could not help but
resort to the discrete or vector model. Another reason for them
to shift their efforts to develop various vector models is that sam-
ples formulated based on a vector model can be directly handled
by all of the existing machine-learning algorithms such as the opti-
mization approach [28], covariance discriminant (CD) [29,30], corre-
lation coefficient method [31], neural network [32], SLLE (supervised
locally linear embedding) algorithm [33], SVM [14,34], random for-
est [35], conditional random field [36], nearest neighbor (NN) [37],
K-nearest neighbor (KNN) [38,39], optimized evidence-theoretic
(OET)-KNN [40], fuzzy K-nearest neighbor [38], and multi-label
(ML)-KNN algorithm [41]. Below, we elaborate how to develop an
effective vector model for the current study and its rationale.

Just like using the amino acid composition (AAC) of a protein
[42] to represent its sequence for statistical analysis, we can use
the nucleic acid composition (NAC) to represent a DNA sample.
Thus, a DNA sample in Eq. (6) can be expressed as:

D ¼ ½ f ðAÞ f ðCÞ f ðGÞ f ðTÞ �T ð7Þ

where f ðAÞ, f ðCÞ, f ðGÞ, and f ðTÞ are the normalized occurrence fre-
quencies of adenine (A), cytosine (C), guanine (G), and thymine
(T) in the DNA sequence, respectively, and the symbol T is the trans-
pose operator. As we can see from Eq. (7), however, if using NAC to
represent a DNA sample, all of its sequence order information
would be completely lost.
Now, how can we formulate a DNA sequence with a vector yet
considerably keep its sequence order information? Actually, a
similar problem also occurred in dealing with the sequences of
proteins and peptides, and hence it is one of the most fundamental
problems in computational biology. One way to cope with such a
problem is to represent the DNA sequence with the k-tuple nucleo-
tide composition, that is:

D ¼ ½ f K-tuple
1 f K-tuple

2 � � � f K-tuple
i � � � f K-tuple

4k �
T ð8Þ

where f K-tuple
i is the normalized occurrence frequency of the i-th k-

tuple nucleotide in the DNA sequence. As we can see from Eq. (8),
when k > 3 the number of the corresponding components will
rapidly increase, causing the so-called ‘‘high-dimension disaster’’
problem [43]. To avoid the problem, here we used the 3-tuple
nucleotide or trinucleotide composition (TNC) to formulate the
DNA sample. Besides, doing so also has clearer biological meaning
because, according to the 3! 1 genetic rule (Fig. 3), a codon of
three nucleotides in DNA defines an amino acid (Table 1) in protein.
Thus, instead of Eq. (8), we have:

D ¼ f 3-tuple
1 f 3-tuple

2 f 3-tuple
3 f 3-tuple

4 � � � f 3-tuple
64

h iT

¼ f ðAAAÞ f ðAACÞ f ðAAGÞ f ðAATÞ � � � f ðTTTÞ½ �T
ð9Þ

where f 3-tuple
1 ¼ f ðAAAÞ is the normalized occurrence frequency of

AAA in the DNA sequence, f 3-tuple
2 ¼ f ðAACÞ is that of AAC,

f 3-tuple
3 ¼ f ðAAGÞ, is that of AAG, and so forth. Using Eq. (9), however,

we can incorporate only the local sequence order information
between the most and second most contiguous nucleotides but
not the global or long-range sequence order information.

To incorporate the long-range sequence order information of a
DNA sample, let us adopt the concept of pseudo amino acid com-
position [44,45] or Chou’s PseAAC [46,47] in protein. Since the con-
cept of PseAAC was proposed in 2001 [44], it has been used in
nearly all the fields of protein attribute predictions (see, e.g., Refs.
[48–53] as well as a long list of publications cited in a recent
review [54]. Because it has been widely used, recently three types
of powerful open access software, called PseAAC-Builder [55],
propy [56], and PseAAC-General [54], were established; the first
two are for generating various modes of Chou’s special PseAAC,
whereas the third is for generating those of Chou’s general PseAAC.

In a way parallel to the approach of using the PseAAC formula-
tion for protein/peptide, a DNA sample can also be formulated with
the PseTNC (pseudo trinucleotide composition), as given by [57]:

D ¼ ½ d1 d2 � � � d64 d64þ1 � � � d64þk �T ð10Þ

where the first 64 components reflect the local or short-range
sequence order effect and the next k ¼ 8 components reflect the
global or long-range effects. Its detailed derivation, along with
how to calculate the 64þ 8 ¼ 72 components in Eq. (10), was clear-
ly elaborated in Ref. [57], and hence there is no need to repeat here.

Optimizing imbalanced benchmark datasets

The aforementioned benchmark dataset is very imbalanced;
that is, the size of the negative subset S� is more than two times



Fig.3. A graph showing how a DNA codon of three nucleotides is converted into an
amino acid. The characters in the first three rings from the center represent four
bases in DNA, whereas those in the fourth ring represent the single-letter codes of
the 20 native amino acids in protein. The symbol * represents the ‘‘stop’’ sign.

Fig.4. A flowchart showing the process of converting an imbalanced benchmark
dataset into a balanced one by the NCR and SMOTE treatments. In the figure, N1 and
N2 represent the numbers of samples in the original positive and negative subsets,
respectively, n2 represents the number of negative samples removed by the NCR
treatment, and n1 represents the number of positive hypothetical samples created
by SMOTE and added to the positive subset to make the optimized benchmark
dataset completely in balance between its two subsets. In the current case, we have
N1 ¼ 787, N2 ¼ 1639, n1 ¼ 330, and n2 ¼ 522. See the relevant text for further
explanation.
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the size of the positive subset Sþ. Although this might reflect the
real world in which the non-methylation sites are always the
majority compared with the methylation ones, a predictor trained
with such a skewed benchmark dataset would have the conse-
quence that many DNA methylation sites might be mispredicted
as non-methylation ones [58]. Actually, what is really the most
intriguing information for the drug development scientists is the
information about the methylation sites. Therefore, it is important
to find an effective approach to optimize the unbalanced bench-
mark dataset and minimize the consequence of this kind of mis-
prediction [59].

To realize this, we used the NCR (neighborhood cleaning rule)
[60] and the SMOTE (synthetic minority over-sampling technique)
[61] treatments to optimize the aforementioned skewed bench-
mark datasets. The former is to remove some redundant negative
samples from the negative subset so as to minimize its statistical
noise, which can be likened to the sample screening procedure in
computational proteomics (see, e.g., Ref. [62]). The latter is to
add some hypothetical positive samples into the positive subset
so as to enhance the ability in identifying the methylation sites,
which can be likened to the seed propagation approach in Ref.
[63] and the Monte Carlo sampling approach in Refs. [64,65] for
expanding the positive subsets.
Table 1
Codon conversion from DNA trinucleotides to protein amino acids.

First base Second base

A C

A Lys Thr
Asn Thr
Lys Thr
Asn Thr

C Gln Pro
His Pro
Gln Pro
His Pro

G Glu Ala
Asp Ala
Glu Ala
Asp Ala

T Stop! Ser
Tyr Ser
Stop! Ser
Tyr Ser
The detailed procedures for the NCR treatment [60] in the cur-
rent study are as follows. First, for each of the samples in the
benchmark dataset S, find its three nearest neighbors. Second, if
the sample concerned belongs to the negative subset S� and at
least two of its three nearest neighbors belong to the positive sub-
set S

þ, remove the sample from the benchmark dataset. Third,
however, if it belongs to the positive subset Sþ, remove those of
its nearest neighbors that belong to the negative subset S

� from
the benchmark dataset. After the aforementioned NCR treatment,
522 negative samples (cf. Supporting Information S2 in supple-
mentary material) were removed from the negative subset.

Subsequently, to further optimize the benchmark dataset, the
SMOTE approach [61] was adopted to create 330 hypothetical sam-
ples for the positive subsets by the linear interpolation scheme.

The above two treatments, one for removing 522 samples from
the negative subset and the other for adding 330 hypothetical sam-
ples to the positive subset, along with the final outcome can be for-
mulated as:
Third base

G T

Arg Ile A
Ser Ile C
Arg Met G
Ser Ile T

Arg Leu A
Arg Leu C
Arg Leu G
Arg Leu T

Gly Val A
Gly Val C
Gly Val G
Gly Val T

Stop! Leu A
Cys Phe C
Trp Leu G
Cys Phe T
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Sð2426Þ ¼ Sð787Þ [ Sð1639Þ; from original Eq :ð5Þ
Sð1904Þ ¼ Sð787Þ [ Sð1117Þ; after NCR treatment
Sð2234Þ ¼ Sð1117Þ [ Sð1117Þ; after SMOTE treatment

8><
>:

ð11Þ

Meanwhile, to provide an intuitive picture, a flowchart is given
in Fig. 4 to illustrate the process of how to optimize an imbalance
benchmark dataset.

For the reader’s convenience, the 1117 positive samples and
1117 negative samples finally obtained by the optimization proce-
dures are given in Supporting Information S3 of the supplementary
material. Note that the aforementioned positive samples contain
330 hypothetical samples that were generated via the linear inter-
polation scheme in SMOTE and, hence, can be expressed only by
their feature vectors as defined in Eq. (10) but not real sample
codes as given in Supporting Information S1. Nevertheless, it
would be perfectly fine to do so because the data directly used to
train a predictor were actually the samples’ feature vectors but
not their original sequences. This is the key to optimize an imbal-
anced benchmark dataset with such a novel approach, and its
rationale is further elucidated later.

SVM classifier

The SVM classifier or SVM algorithm [66] has been widely used
in many areas of bioinformatics (see, e.g., Refs. [14,67–71]). The
basic idea of SVM is to construct a separating hyper-plane to max-
imize the margin between the positive dataset and negative data-
set. For a brief formulation of SVM and how it works, see Refs.
[34,72]; for more details about SVM, see Ref. [73].

The software of SVM used in the current study was downloaded
from the LIBSVM (library for SVMs) package [74,75], which con-
tains two built-in parameters: c and c. To maximize the perfor-
mance, the two parameters were preliminarily optimized with
the search function ‘‘SVMcgForClass’’ downloaded from http://
www.matlabsky.com.

The DNA samples as formulated by Eq. (10) were used as inputs
for the SVM classifier. Given a query vector sample, the classifier
can quite accurately predict which class it belongs to after training
by a relevant dataset, that is, clearly indicating whether it is a
‘‘methylation DNA segment’’ or ‘‘non-methylation DNA segment’’
(cf. Eq. (2)).

The predictor obtained via the aforementioned procedures is
called ‘‘iDNA-Methyl,’’ where ‘‘i’’ denotes ‘‘identify’’ and ‘‘DNA-
Methyl’’ denotes ‘‘DNA methylation site.’’
Results and discussion

As pointed out in the beginning of Materials and Methods, one
of the important procedures in developing a new predictor is how
to properly and objectively evaluate its quality [23]. This actually
comprises the following two aspects: (i) what metrics should be
used to quantitatively measure the prediction accuracy and (ii)
what kind of method should be adopted to do the test. Below,
we address these problems.

A set of four metrics for measuring prediction quality

For the problem investigated in the current study, four indexes
are often used in the literature: (i) overall accuracy (or Acc), (ii)
Mathew’s correlation coefficient (or MCC), (iii) sensitivity (or Sn),
and (iv) specificity (or Sp) (see, e.g., Ref. [76]). However, the con-
ventional formulations for the four metrics are not quite intuitive
and easy to be understood by most experimental scientists, par-
ticularly the one for MCC. Actually, by using the symbols and
derivation as used in Ref. [77] for studying signal peptides, the
aforementioned four metrics can be formulated by a set of equa-
tions given below:

Sn ¼ 1� Nþ�
Nþ 0 6 Sn 6 1

Sp ¼ 1� N�þ
N� 0 6 Sp 6 1

Acc ¼ K ¼ 1� Nþ�þN�þ
NþþN� 0 6 Acc 6 1

MCC ¼
1� Nþ�

Nþþ
N�þ
N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N�þ�Nþ�

Nþ

� �
1þ

Nþ��N�þ
N�

� �r �1 6MCC 6 1

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where Nþ represents the total number of DNA methylation seg-
ments investigated, Nþ� represents the number of true methylation
segments incorrectly predicted as the non-methylation segments,
N� represents the total number of non-methylation segments
investigated, and N�þ represents the number of non-methylation
segments incorrectly predicted as the methylation segments.

With Eq. (12) at hand, it is now crystal-clear to see the following.
When Nþ� ¼ 0, meaning that none of the methylation segments is
incorrectly predicted to be a non-methylation segment, we have
the sensitivity Sn ¼ 1. When Nþ� ¼ Nþ, meaning that all of the
methylation segments are incorrectly predicted to be non-methyla-
tion segments, we have the sensitivity Sn ¼ 0. Likewise, when
N�þ ¼ 0, meaning that none of the non-methylation segments was
incorrectly predicted to be a methylation segment, we have the
specificity Sp ¼ 1. When N�þ ¼ N�, meaning that all of the non-
methylation segments were incorrectly predicted as methylation
segments, we have the specificity Sp ¼ 0. When Nþ� ¼ N�þ ¼ 0,
meaning that none of methylation segments in the positive dataset
and none of the non-methylation segments in the negative dataset
was incorrectly predicted, we have the overall accuracy Acc ¼ 1 and
MCC ¼ 1. When Nþ� ¼ Nþ and N�þ ¼ N�, meaning that all of the
methylation segments in the positive dataset and all of the non-
methylation segments in the negative dataset were incorrectly pre-
dicted, we have the overall accuracy Acc ¼ 0 and MCC ¼ �1. When
Nþ� ¼ Nþ=2 and N�þ ¼ N�=2, we have Acc ¼ 0:5 and MCC ¼ 0, indi-
cating no better than random prediction. As we can see from the
above discussion based on Eq. (12), the meanings of sensitivity,
specificity, overall accuracy, and Mathew’s correlation coefficient
have become much more intuitive and easier to understand.

It should be pointed out, however, that the set of metrics as
defined in Eq. (12) is valid only for the single-label systems. For
the multi-label systems, whose emergence has become more fre-
quent in system biology [78,79] and system medicine [80,81], a
completely different set of metrics as defined in Ref. [41] is needed.
Jackknife and target–jackknife cross-validation

The following three cross-validation methods are often used to
validate a statistical predictor: independent dataset test, subsam-
pling (or K-fold cross-validation) test, and jackknife test [82]. Of
the three methods, however, the jackknife test is deemed the least
arbitrary one that can always yield a unique outcome for a given
benchmark dataset, as elucidated in Ref. [83] and demonstrated
by Eqs. (28–30) therein. Accordingly, the jackknife test has been
widely recognized and increasingly used by investigators to exam-
ine the quality of various predictors (see, e.g., Refs. [33,51,53,84–
87]). During the jackknife process, each of the samples in the
benchmark dataset is singled out in turn and tested by the predic-
tor trained by the remaining samples.

When carrying out the jackknife test on the optimized bench-
mark dataset of Eq. (11), however, some special consideration is
needed. This is because it has contained 330 hypothetical positive

http://www.matlabsky.com
http://www.matlabsky.com


Table 2
A comparison of iDNA-Methyl with the existing predictors via the jackknife cross-
validation on the same experiment-confirmed data.

Predictor Acc (%) MCC Sn (%) Sp (%) Web-server

iDNA-Methyla 77.49 54.71 61.25 90.33 Yes
Methylatorb 71.35 33.27 51.72 80.78 Not working
MethCGIc 73.83 37.48 49.68 85.42 Not working

a Results obtained by the target–jackknife test for the current predictor on the
experiment-confirmed data. See ‘‘Representation of DNA segment samples’’ section
for further explanation about the target–jackknife test.

b Results obtained by the jackknife test for the predictor by Bhasin and coworkers
[10] on the same experiment-confirmed data.

c Results obtained by the jackknife test for the predictor by Fang and coworkers
[11] on the same experiment-confirmed data.

Fig.5. The ROC (receiver operating characteristic) curves showing the predictor’s
quality. The area under the ROC curve for iDNA-Methyl is obviously larger than
those of its counterparts, indicating a clear improvement of the new predictor over
the existing ones [93].
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samples and excluded 505 experimental negative samples. Because
the validation should be conducted strictly based on the
experimental data only, a special jackknife test, the so-called
target–jackknife test, has been introduced in this study. During
the target–jackknife process, only the experiment-confirmed
samples are in turn singled out as a target (or test sample) for
Fig.6. A semi-screenshot showing the top page of the iDNA-Me
cross-validation. Thus, when validating the predictor with the posi-
tive samples in Sþð1117Þ, only ð1117� 330Þ ¼ 787 experimental
positive samples need to be singled out for cross-validation. When
validating the predictor with the negative samples, however, count-
ed are not only all 1117 samples in S�ð1117Þ but also the 522
experimental negative samples that have been removed from the
optimized benchmark dataset by the NCR treatment. Doing so will
make it absolutely fair in comparing the performance of the current
predictor with the other existing methods, as elaborated in next
section; that is, all of the predictors are tested using exactly the
same experiment-confirmed samples.

Comparison with the existing predictors

The scores for the four metrics as defined in Eq. (12) achieved
by the current iDNA-Methyl predictor via the target–jackknife
tests are given in Table 2, where for facilitating comparison
the corresponding scores by the existing predictors are also list-
ed. From the table, we can observe the following. First, the score
of overall accuracy (Acc) achieved by the current predictor iDNA-
Methyl is remarkably higher than those achieved by the existing
predictors [10,11]. Second, it is also true for the other three met-
rics, clearly indicating that the new predictor, in identifying DNA
methylation sites, not only can yield higher prediction accuracy
but also is more stable with higher sensitivity and specificity.

Because graphic approaches can provide useful intuitive
insights (see, e.g., Refs. [88–92]), here we also provide a graphic
comparison of the current predictor with their counterparts via
the ROC (receiver operating characteristic) plot [93], as shown in
Fig. 5. According to the ROC [93], the larger the area under the
curve, the better the corresponding predictor. As we can see from
the figure, the area under the ROC curve of the new predictor is
remarkably greater than those of its counterparts, indicating a
clear improvement of the new predictor in comparison with the
existing ones.

It is instructive to point out that although the current predictor
iDNA-Methyl was trained by the optimized benchmark dataset in
which 522 experiment-confirmed negative samples were removed
from the original negative subset to balance its size with the posi-
tive one, they were still counted in the target–jackknife cross-
validation. On the other hand, although 330 hypothetical positive
thyl web-server at http://www.jci-bioinfo.cn/iDNA-Methyl.

http://www.jci-bioinfo.cn/iDNA-Methyl
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samples were added into the optimal positive subset to make it
completely in balance with the negative one, only the experimen-
tal samples were counted in calculating the metric scores. In other
words, the experiment-confirmed samples counted during the
cross-validation for calculating the metric scores of iDNA-Methyl,
regardless of whether they are positive or negative samples, are
exactly the same as those used to test the other predictors listed
in Table 2.
Web-server and user guide

As shown in Table 2, none of the two existing predictors [10,11]
has a working web-server. In contrast, a workable web-server was
established for the new predictor, which is particularly important
for those who are interested in using the iDNA-Methyl predictor
but not its mathematical details. Below, we give a step-by-step
guide on how to use the web-server to get the desired results.
Step 1
Open the web-server at http://www.jci-bioinfo.cn/iDNA-

Methyl, and you will see the top page of the iDNA-Methyl predictor
on your computer screen, as shown in Fig. 6. Click on the ‘‘Read
Me’’ button to see a brief introduction about iDNA-Methyl and
the caveat when using it.
Step 2
Either type or copy/paste the query DNA sequences into the

input box at the center of Fig. 6. The input sequence should be in
the FASTA format. For examples of sequences in FASTA format,
click on the ‘‘Example’’ button right above the input box.
Step 3
Click on the ‘‘Submit’’ button to see the predicted result. For

example, if you use the query DNA sequences in the ‘‘Example’’
window as the input, you will see the following shown on the
screen of your computer: (1) DNA sequence 1 contains 160 C (cy-
tosine) residues, of which only those at the sequence positions 17,
195, 209, and 223 are predicted to be the methylation sites, and all
of the others are not. (2) DNA sequence 2 contains 294 C (cytosine)
residues, of which only those at the sequence positions 378, 786,
797, 831, and 1017 are predicted to be the methylation sites, and
all of the others are not. All of these results are fully consistent
with the experimental observations.
Step 4
As shown on the lower panel of Fig. 6, you may also choose the

batch prediction by entering your e-mail address and your desired
batch input file (in FASTA format) via the ‘‘Browse. . .’’ button. To
see the sample of batch input file, click on the ‘‘Batch-example’’
button. After clicking the ‘‘Batch Submit’’ button, you will see
‘‘Your batch job is under computation; once the results are avail-
able, you will be notified by e-mail.’’
Step 5
Click the ‘‘Supporting Information’’ button to download the

benchmark dataset used to train and test the iDNA-Methyl
predictor.
Step 6
Click on the ‘‘Citation’’ button to find the relevant articles that

document the detailed development and algorithm of iDNA-
Methyl.
Conclusion

We anticipate that the iDNA-Methyl predictor will become a
useful high-throughput tool because (i) information of DNA
methylation sites is important for both basic research and drug
development and (ii) compared with the existing predictors in
identifying the DNA methylation sites, it has remarkably higher
success rates and a workable and publicly accessible web-server.

It has not escaped our notice that the approach of using the
3! 1 codon conversion to incorporate the long-range or global
sequence order information of DNA, as well as the technique of
using NCR and SMOTE to optimize unbalanced datasets, can be
effectively used in many other areas of genome analysis as well.
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